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a CH2-dependent analytical
method using near-infrared spectroscopy via the
integration of two algorithms: non-dominated
sorting genetic-II and competitive adaptive
reweighted sampling (NSGAII-CARS)†

Xin He,a Huanyu Eb and Guoyu Ding *b

In most of the near-infrared studies, near-infrared spectra (NIRS) were often mathematically treated.

However, these algorithms selected a large number of variables and latent variables, and they caused

the over-fitting phenomenon, which became very common. The large number of variables made it

impossible to extract the “chemical information” directly from the NIRS. To build robust and

interpretable mathematical models, the non-dominated sorting genetic-II-competitive adaptive

reweighted sampling (NSGAII-CARS) algorithm was proposed to determine influential functional

groups for quantitative analysis. In this research, data on a primary mixture of two amino acids (AAs),

namely NH2(CH2)3COOH and HOOC(NH2)CH(CH2)2COOH, was used to illustrate the algorithm. The

principle of the algorithm was first to find out the different characteristic spectral regions of two

amino acids by extreme points according to Non-dominated Sorting Genetic-II (NSGAII). Second,

based on the absolute value of the regression coefficient, we found out [n(CH2) + 2d(CH2)] and

[2n(CH2)], where the wavenumber ranged from 6165 to 5683 cm−1, were the influential functional

groups for quantitative analysis. Finally, the CARS (competitive adaptive reweighted sampling)

algorithm was combined with NSGAII to find the specific fingerprint points for the determination of

two AAs. Compared with the previous results, the NSGAII-CARS algorithm not only pointed out the

influential quantitative functional groups but also used only 6 points for HOOC(NH2)CH(CH2)2COOH

and 18 points for NH2(CH2)3COOH to achieve the full-spectrum quantitative effect. The results

proposed a general algorithm for the quantitative analysis of NIRS obtained in the binary or ternary

mixed systems. The MATLAB codes of the NSGAII-CARS algorithm are available on the website:

https://github.com/Mark1988NK/NSGAII-CARS-Algorithm.git.
1. Introduction

With its fast and non-destructive advantages, near-infrared
spectroscopy (NIRS) is competent of real-time quantitative
analysis.1 NIRS spans from 12 000 cm−1 to 4000 cm−1 and
reects the overtones and combination absorption of functional
group fundamental molecular vibrations including C–H, C]O,
N–H, O–H, and S–H.2 However, the anharmonic effects of
combination or overtone from NIRS create a large number of
overlapping vibrational patterns without explicit spectral
Hospital of China Medical University, No.
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tion (ESI) available. See DOI:

of Chemistry 2023
dependencies. Therefore, it becomes very difficult to resolve the
near-infrared spectra.3 From the point of view of this research, it
is most worth studying the molecular mechanism underlying
the absorption in NIRS. The NIRS can be resolved by conven-
tional experimental methods, chemometrics, two-dimensional
correlation spectroscopy, or spectral simulation, a more
recent research hotspot.3,4 Conventional experimental methods
for spectral analysis are isotope exchange and polarisation
measurements. For example, the bands of CH in CH3 or CH2

groups were analyzed to understand how the CH/CH2 vibrations
occur by replacing the H atom with a halogen atom, and the
principle behind this is that C–X (X = halogen) does not show
absorption in the near-infrared region.5,6 Chemometrics has
also been used to study the molecular mechanism of NIRS.7

Particularly, regression coefficients or loading plots are helpful
for band assignments.8,9 Recently, advances in anharmonic
theories, when combined with ever-increasing computer tech-
nology, have made the theoretical analysis of NIRS possible.10 A
Anal. Methods
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growing number of spectral simulation investigations aimed at
near-infrared regions has started.3,11 For example, the applica-
tion of fully anharmonic quantum chemical calculation for
a better analysis of partial least squares regression (PLSR)
models of the natural product rosmarinic acid (RA) in Ros-
marini folium was reported. A good agreement between the
theoretical and experimental NIR spectra was obtained, and the
delicate band assignments of RA were analyzed in the 8000–
4000 cm−1 wavenumber region.12

In this research, for a better analysis of PLSR models in the
binary or ternary mixed systems, a new algorithm to select and
analyze the wavenumber variables was proposed, and it was
named NSGAII-CARS algorithm. The new algorithm combined
the merits of two algorithms, namely, NSGAII and CARS.
NSGAII is one of the most effective multi-objective genetic
algorithms, which can supply many Pareto optimal solutions
for researchers to help them “have their cake and eat it”.
Moreover, researchers can pick the extreme points from the
Pareto front solution plane. For the NIRS analysis, the picked
extreme point represents the most optimal wavenumber
interval combination for the corresponding dependent vari-
able Yi. Researchers can complete the optimization process for
2–3 dependent variables at the same time. It has to be
mentioned that, in this work, the adopted NSGAII algorithm
was a variant of NSGA-II, which was a controlled, elitist genetic
algorithm.13 The controlled elitist genetic algorithm also
retains the individuals that can help to increase the diversity of
the population even if they have a larger root mean square
error of cross validation (RMSECV). It has shown that the
NSGA-II with controlled elitism was more likely to search for
the best t solution than the original NSGA-II. In this research,
a binary mixed system consisting of two AAs, namely NH2(-
CH2)3COOH and HOOC(NH2)CH(CH2)2COOH, was used to
illustrate the algorithm. The principle of the algorithm was
rst to nd out the different characteristic spectral regions of
two amino acids by extreme points according to the Pareto
optimal solution plane obtained by NSGAII. Two extreme
points represented the lowest mean square error of two AAs in
the PLSR model under the same genetic algorithm process.
Because the molecular structure of two AAs differs by the –

COOH and the –CH2/CH sequence, the selected bands by
NSGAII may provide a wealth of information regarding these
functional groups. However, in the actual work, the NSGAII
algorithm was time-consuming when applied to the NIRS
analysis since the number of wavenumber variables was too
large for the subsequent genetic algorithm. Therefore, the
NIRS data set between 4000 and 12 000 cm−1 was subdivided
equally into 10–50 intervals before the NSGAII algorithm.
Finally, the computing time decreased signicantly. However,
the selected intervals by NSGAII were still coarse for two
similar AAs.

To more nely distinguish the specic ngerprint points of
two AAs, the CARS algorithm was used aer the NSGAII algo-
rithm. The CARS algorithm is a kind of variable selection
method that eliminates the smaller PLS regression coefficients
in a constantly iterative process, and is combined with Monte
Carlo sampling.14 During the iterative process, the number of
Anal. Methods
variables was descended by an exponential function. With the
number of variables descending, the nal selected variables
could be obtained from the iterative step corresponding to the
minimum tting error. In addition, the whole process of the
CARS algorithm is like the “survival of the ttest” principle. In
this research, CARS was used aer NSGAII to dig out the size-
able absolute regression coefficients in the selected intervals,
and this provided the specic ngerprint points for the deter-
mination of two AAs.

According to our results, NSGAII helped us to nd that
[n(CH2) + 2d(CH2)] and [2n(CH2)], where the wavenumber ranged
from 6165–5683 cm−1, were the inuential functional groups
for the quantitative analysis of two AAs. It was a pity that the
carboxyl group was not identied by NSGAII, and the reason
behind this will be discussed in the following chapters. Aer
NSGAII, the CARS algorithm found that only 6 points from CH/
CH2 in NH2(CH2)3COOH and 18 points from CH2 in
HOOC(NH2)CH(CH2)2COOH were enough to achieve the full-
spectrum quantitative effect.

NSGAII is introduced in the NIRS analysis for the rst time in
this research. Themost signicant result of NSGAII is the Pareto
front solution plane, and “this plane” will show the lowest
RMSECVs of up to three objective functions simultaneously. In
our view, this research results can propose a general paradigm
for the quantitative analysis of NIRS obtained in a binary or
ternary mixed system.

2. Materials and methods
2.1 Binary mixed NIRS dataset

The sample data of the binary mixed NIRS dataset was obtained
from the early research of our group.15 Now we share the data
and NSGAII-CARS algorithm on the GitHub. The MATLAB codes
for implementing NSGAII-CARS and binary mixed system
dataset are freely available on the website: https://github.com/
Mark1988NK/NSGAII-CARS-Algorithm.git. A TENSOR 37 FT-
NIR spectrometer (Bruker Optik, Ettlingen, Germany) was
used to collect the dataset, and the wavenumber range ranged
from 12 000 to 4000 cm−1 with 8 cm−1 intervals by averaging
over 32 scans. The transmission spectrum was acquired with
a cuvette of 2 mm thickness. Unlike previous research, this
research used water as the background. Therefore, the trans-
mission spectrum looked different from other research studies.
In this study, 71 samples collected in the rst batch of
biotransformation were used as the leave-one-out cross valida-
tion (LOOCV) dataset to build the PLSR model, and 70 samples
collected in the second batch of biotransformation were used as
the validation dataset. Fig. 1(A) displays the biotransformation
reactor from L-glutamic acid (HOOC(NH2)CH(CH2)2COOH, L-
Glu) to g-aminobutyric acid (NH2(CH2)3COOH, GABA) via the
glutamate decarboxylase (GAD) high-expression strain of E. coli
BL21. The binary mixed system is the reaction solution mainly
containing the substrate L-Glu and the product GABA. Of
course, the binary mixed system also includes catalytic enzyme
GAD and trace amounts of coenzyme pyridoxal 5′-phosphate
(PLP). Therefore, we made a homemade pre-lter system, which
included a series of coarse ltration (20 mm) and ne ltration
This journal is © The Royal Society of Chemistry 2023
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(0.2 mm) to wipe off insoluble L-Glu and enzyme. From Fig. 1(B),
the baseline shi is almost impossible to observe aer pre-
ltering when compared with other reaction solutions
involving different concentrations of enzymes. In addition, the
band at around 7000 cm−1 is the water band. It was not strange
that the band appeared as a valley, not a peak, since we used
water, not air, as the background.
2.2 NSGAII-CARS algorithm

Before building the calibration model, pre-processing of the
spectra can clean the noise among the data, and reasonable pre-
treatment methods can remarkably improve the model perfor-
mance. The pre-processing methods used in this research were
convolution smoothing, auto-scaling (auto), detrend, standard
normal variable transformation (SNV), detrend + SNV, SNV +
detrend, multiplicative scatter correction (MSC), Savitzky–Golay
rst derivative (Der1), Savitzky–Golay second derivative (Der2),
Der1 + detrend, Der1 + SNV and Der1 + MSC.

Each spectrum in the dataset contained 2074 variables.
However, the noise was observed in the range of 5300–4872 and
4224–4000 cm−1 because of low optical throughput caused by
water absorption.16 Finally, only 1906 variables were reserved
aer eliminating the noise parts.

The NSGAII-CARS algorithm is the integration of NSGAII and
CARS algorithms. The essential components of the NSGAII
algorithm include chromosome structure, tness functions,
genetic operators and the NSGAII process.

In this research, the candidate chromosome structure was
represented by a vector ofm dimensions, wherem is the number
of wavenumber variables. However, the 1906 variables were too
large that would be time-consuming for subsequent evolu-
tionary multi-objective optimization. Therefore, the data set
between 4224 and 12 000 cm−1 was subdivided equally into 10–
50 intervals as the gene in the chromosome, where the gene
could take either “1” or “0”, namely, the selected or unselected
intervals, respectively.

The goodness of each chromosome was evaluated by the
tness functions. Therefore, choosing the appropriate tness
function is another important aspect of any genetic optimiza-
tion procedure. In this research, the value of RMSECV from the
PLSR model was computed to evaluate the performance. This
Fig. 1 (A) Schematic of a biotransformation reactor from L-Glu to GABA

This journal is © The Royal Society of Chemistry 2023
meant that the smaller the RMSECV value was, the easier it
would be retained during evolution.

Genetic operators promoted the mutation of each chro-
mosome to nd out the best individuals, namely, the indi-
viduals with the lowest RMSECV of the PLSR model. Genetic
operators allowed us to create new wavenumber interval
combination solutions based on the existing combination
solutions in the population. There are three basic types of
operators: selection, mutation and crossover. Selection
operation was executed before mutation and crossover.
Selection chose parents for the next generation based on
the principle “the smaller the RMSECV, the easier they were
chosen as the parents”. The selection operator provided the
competitive parents for mutation or crossover. Mutation
changed a certain proportion of individuals to produce many
new solutions, while crossover selected two individuals
and created two new individuals. In this research, random
binary tournament selection was performed: 80% of the
population was used for crossover by the scatter function and
5% of the population was used for mutation by uniform
function.

The parameters of NSGAII are listed in Table 1 and its
process proceeded as follows:

Phase 1—initialization: the initial population included 100
chromosomes randomly generated. Here, these 100 chromo-
somes were the 100 random combinations of the 30 split
wavenumber intervals.

Phase 2—produce offspring:
(a) Random binary tournament selection was used to select

parents P(t) for the next generation.
(b) The parents implemented the basic types of operators

(mutation and crossover) to create the offspring Q(t) which have
the same size as their parents.

Phase 3—produce parents:
(a) Merged the current population and offspring Q(t) into one

matrix T(t), to reserve elitism (the mechanism could ensure that
all the best individuals were passed to the next generation).
Calculated the rank and crowding distance for all individuals in
the T(t), and sorted it into different ranks according to the
nondominated sorting algorithm. The following two-objective
optimization problem was used to illustrate the non-
dominated sorting algorithm:
, (B) effect of the homemade pre-filter system.

Anal. Methods
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Table 1 NSGAII parameters for optimization

NSGAII Parameters

Fitness function PLS
Decision variables 1906
Population size 100
Selection method Tournament
Mutation functions Uniform
Mutation rate 0.05
Crossover function Scattered
Crossover fraction 0.8
Distance measure function Distance crowding
Pareto front population fraction 0.5
Intervals/number of iterations 10/50; 20/1000; 30/3000; 40/3000; 50/5000
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Minimize f1ðxÞ ¼ RMSECV for GABA ðPLSRðx1; x2;.; x30ÞÞ
Minimize f2ðxÞ ¼ RMSECV for Glu ðPLSRðx1; x2;.; x30ÞÞ
Subject to x1�30 ¼ 0; 1

9>>=
>>;

(1)

z* = (f1(x), f2(x))
T (2)

The ideal objective vector z* is the minimal solution to all
objective functions (f1, f2). However, in general, the ideal
objective vector is a non-existent solution. Since it can't be
ensured that the minimum objective solutions of f1 and f2 share
the same independent variable x. Therefore, collecting the
Pareto-optimal solutions z* in each generation and sorting it
into different ranks according to the nondominated sorting
algorithm are the normal process of multi-objective optimiza-
tion. In the Pareto-optimal solutions z*, some solutions x(p)

dominates other solutions x(q), and it means:

For ci ˛ {1, 2}, if fi(x
(p)) # fi(x

(q)), then x(p) dominates x(q) (3)

In the nondominated sorting algorithm, the solutions that
no other solutions can dominate in the z* are ranked as the
rst. Then, removing the rst rank out from z*, the le solu-
tions repeat the previous process to get the second rank. The
following ranks execute the same process until all solutions are
allocated.

(b) Trimmed the T(t) to only keep 100 individuals by retaining
the appropriate number of individuals in each rank. Actually,
the pre-dened distribution of number of individuals in each
rank followed a geometric distribution: ni = r × ni−1; where ni is
the maximum number of allowed individuals in the i-th front
and r (<1) was the reduction rate.

Phase 4—stop criterion:
If the stop criterion, maximum number of generations was

not satised, set t = t + 1 and went back to phase 2(b).
Aer the NSGAII algorithm, the wavenumber variables still

contained some irrelevant information or collinear variables.
Therefore, the CARS algorithm was used next to search for those
specic ngerprint points among the spectral intervals selected
by NSGAII. These specic ngerprint points were the least
points used for quantication. In the CARS, enforced variable
Anal. Methods
reduction and adaptive reweighted sampling were used to
search for these specic ngerprint points. The wavelengths
with higher absolute values of regression coefficients were more
likely to be retained in each iterative process.17 In detail,
enforced variable reduction followed an exponentially
decreasing function (EDF). In this research, to nd out these
specic ngerprint points, totally 50 runs were set to iteratively
lter the variables with noise or small absolute regression
coefficients. In the i-th run of enforced variable reduction, the
number of remaining variables was calculated as follows:

rvi = VNS × e−k×i (4)

where VNS is the initial number of variables selected from the
NSGAII method. The constant k controlled the EDF curve, which
could be computed as follows:

k ¼ lnð0:5� VNSÞ
N

(5)

The constant k is positively correlated with the speed of
enforced variables reduction. When i = 0, all the VNS variables
were used to build the PLSR model; when i = N, the number of
variables was as low as two variables. Finally, the wavelengths
with smaller RMSECV survived to predict the validation dataset.

All the algorithms in this work were carried out in the
MATLAB 2019b environment, and the computer was equipped
with a Win10 platform with an Intel® Core i5-2600 CPU @ 2.80
GHz × 32.

3. Results and discussion
3.1 NSGAII analysis used for the binary mixed system

Fig. 1(A) illustrates the binary mixed system, and the two
dened objective functions in this research are minimum
RMSECVs of L-Glu and GABA in the 71 samples collected in the
rst batch of biotransformation. In this research, NSGAII
analysis was used for the binary mixed system. NSGAII shared
the same seeds to begin the evolutionary algorithm for search-
ing the wavelength variables with the minimum RMSECVs of L-
Glu and GABA simultaneously. For evolutionary algorithms, it is
time-consuming when dealing with a large number of variables.
Therefore, to reduce the number of variables, the full-spectrum
This journal is © The Royal Society of Chemistry 2023
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region was rst pre-treated with 12 different spectral pre-
processing methods and then split into different equidistant
spectral intervals to act as the chromosomes for the evolu-
tionary algorithm. In this research, the spectra were split into
10, 20, 30, 40, and 50 equidistant subintervals, and the evolu-
tionary algorithm was used to search the best combination of
equidistant spectral intervals. The effects of the number of
subintervals (10–50) on the calibration and validation predic-
tion performance (RMSECV and RMSEP) were evaluated, and
their results are listed in supplementary Tables S1–S5.† To our
surprise, improving the numbers of spectral intervals did not
remarkably improve the prediction accuracy of the PLSR
models. Fig. 2(A) displays that when the spectra are split into 30
equidistant spectral intervals, it has the lowest RMSEP for both
GABA and L-Glu. Therefore, the number of subintervals was set
as 30 to execute the NSGAII algorithm. Then, NSGAII analysis
searched the most suitable interval combination for the GABA
and L-Glu simultaneously. In addition, the detailed NSGAII
parameters for optimization are listed in Table 1. NSGAII lasted
long, 3000 iterations for 30 subintervals. According to the
controlled elitist approach by Deb in 2001,13 the obtained 100
individuals at the last iteration were ranked by ve ranks with
geometric distribution, as shown in Fig. 2(B). Namely, the
maximum allowable number of individuals in the rst rank was
the highest. Aer that, each rank was allowed to have an
exponentially reducing number of individuals. In this research,
the reduction rate was set to 0.5, which corresponded to the
parameter of Pareto front population fraction, as shown in
Table 1. It has been demonstrated by Deb that NSGAII with
controlled elitism has much better convergence properties than
the original NSGAII algorithm, as the uncontrolled elitism
present in NSGAII produced a large selection pressure with
a lack of diversity to push the search towards better regions of
optimality. At a given number of iterations, the rst Pareto front
(rank 1) was obtained as shown by red circles in Fig. 2(B). Two
triangular frames marked the extreme points of the Pareto front
plane. At last, NSGAII intuitively displayed the lowest mean
Fig. 2 (A) RMSEP and RMSECV of the final and optimal solutions to the
obtained by NSGAII in the maximum number of generations.

This journal is © The Royal Society of Chemistry 2023
square error of two AAs with the same genetic algorithm seed,
and it would be benecial for nding out the specic ngerprint
points of two structurally similar AAs.
3.2 Spectroscopic study of GABA and L-Glu in the near-
infrared region

Fig. 3(A) depicts the different characteristic spectral regions of
two structurally similar AAs, which were searched out using
NSGAII. For further analyses of the different characteristic
spectral regions, 10 mg mL−1 aqueous GABA solution and L-Glu
solution were prepared. Fig. 3(B) depicts the GABA NIR absor-
bance spectrum pre-treated by Der1 + detrend in the 12 000–
4000 cm−1 region with water as the background. With the same
method, L-Glu was obtained, as shown in Fig. 3(C). It should be
noted that the noise part located within interval 28 was elimi-
nated in the range of 5300–4872 cm−1. In addition, the noise
outside interval 30 was also eliminated in the range of 4224–
4000 cm−1. The noise is caused by two large water absorbance
bands in the center of 5200 and 3680 cm−1.16 In detail, the noise
part of 4224–4000 cm−1 comes from the fundamental frequency
vibration of water molecules, including the n1 symmetric
stretching of H2O at ∼3640 cm−1 and n3 antisymmetric
stretching of H2O at ∼3725 cm−1. In addition, the noise part of
5300–4872 cm−1 comes from the combination mode of water
molecules, including the n2 + n3 (bending and antisymmetric
stretching vibration) mode of H2O at ∼5360 cm−1 and n2 + n1

(bending and symmetric stretching vibration) mode of H2O at
∼5275 cm−1.18,19 The other noise part from water, for example,
the rst overtone of the O–H stretch centered at 6894 cm−1

(corresponding to no. 2 peak in Fig. 3(B)) was not excluded since
the intensity of the rst overtone was much lower than its
fundamental or combination frequency. Therefore, the huge
disturbance in intervals 21, 22, from Fig. 3(A–C), was a normal
phenomenon.

For R–NH3
+, the calculated combination overtone of nas(NH3

+)
and d(NH3

+) locates at∼4702 cm−1.20 However, the peak from the
NSGAII algorithm under different equidistant intervals. (B) Pareto front

Anal. Methods
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Fig. 3 (A) Selected intervals of GABA and L-Glu by NSGAII. (B) Band assignments in the NIR spectrum of GABA. (C) Band assignments in the NIR
spectrum of L-Glu (the scale of the upper black spectrum was expanded by ten times against the original spectrum).
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combination overtone of R–NH3
+ was seriously disturbed by the

combination overtone from water molecules. The phenomenon
was also found in the rst overtone of the N–H stretch
Anal. Methods
(6548 cm−1), which was also seriously disturbed by the rst
overtone of the O–H stretch (6894 cm−1). Hence, the R–NH3

+

group was not a wise choice for quantitative analysis in water.
This journal is © The Royal Society of Chemistry 2023
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For R–COOH, the rst overtone of the O–H stretch from the
carboxyl group cannot be distinguished from the O–H stretch of
water. The combination of C]O stretch and O–H stretch locates
at ∼5300 cm−1, which was also seriously disturbed by the
combination overtone from water molecules.21,22 Considering
the cyclic dimers formed by AAs, the region of 4500–4700 cm−1

(corresponding to no. 10 peak of interval 29 shown in Fig. 3(B
and C)) may be caused by a number of heavily overlapping
bands of the cyclic dimers. It effectively formed a single spectral
feature due to combination bands involving n(C]O), dip(OH)
and ns(CH2), nas(CH2) modes (Table 2).21 Although interval 29
was an effective wavelength range to quantify the AAs in theory,
and it indeed displayed a concentration gradient change, as you
can see in Fig. 3(A), it was not selected by NSGAII. Maybe
interval 29 lacked specicity for determination, since GABA and
L-Glu both share the R–CH2COOH structure.

For the –CH2– sequence, the region from 12 000 to
4000 cm−1 in the near-infrared absorption was assigned to one
of the ve different overtone or combination intervals, in the
order of decreasing frequency, including the [3n(CH)], {[2n(CH)]
+ [d(CH)]}, [2n(CH)], {[n(CH)] + [2d(CH)]} and {[n(CH)] + [d(CH)]}
types.6 These ve absorption groups, each of which not only
located in its characteristic frequency regions but also consisted
of the absorptions of a characteristic intensity level. In detail,
the absorption group in the 4000–4500 cm−1 region (corre-
sponding to interval 30) was assigned to the rst-order combi-
nation of the [n(CH)] + [d(CH)] type. The absorption group in the
4500–5850 cm−1 region (corresponding to intervals 26–29) was
assigned to the second-order combination of the [n(CH)] +
[2d(CH)] type. The absorption group in the 5850–6100 cm−1

region (corresponding to intervals 25–26) was assigned to the
rst-order overtone of CH stretching vibrations or [2n(CH)] type.
The absorption group in the 6800–7500 cm−1 region (corre-
sponding to intervals 19–21) was assigned to the second-order
combination of [2n(CH)] + [d(CH)] type. The absorption group
in the 8500–9000 cm−1 region (corresponding to intervals 13–
15) was assigned to the second-order overtone of CH stretching
vibrations or [3n(CH)] type.
Table 2 Band assignments in the NIRS of GABA and L-Glu

Band number Wavenumber (cm−1) Band assignment

1 8747 3n(CH2)
2 6894 2n(OH)
3 6015 2na(CH2)
4 5941 na(CH2) + ns(CH2)
5 5876 2ns(CH2)
6 5845 2n(CH)
7 5783 n(CH2) + 2d(CH2)

a

8 5714 n(CH2) + 2d(CH2)
9 5532 n(CH2) + 2d(CH2)
10 4673–4569 (nC]O, dipOH) + (nasCH2, nsCH2)
11 4479 na(CH2) + db(CH2)
12 4436 ns(CH2) + db(CH2)
13 4401 n(CH) + dip(CH)

a The band was assigned to the second-order combination of n(CH2) +
2d(CH2) and was enhanced by the Fermi resonance.

This journal is © The Royal Society of Chemistry 2023
In the absorption region of [n(CH)] + [d(CH)] type, or interval
30, AAs showed a large number of overlapped absorptions. The
deformationmodes of the CH2 group include bending, twisting,
wagging and rocking, which are specied as db(CH), dt(CH),
dw(CH) and dr(CH) respectively. The stretching modes of the
CH2 group include symmetric and antisymmetric CH, which are
specied as ns(CH) and na(CH), respectively. Bands could be
assigned for CH2X2, however for CH2XCHX2, CH3(CH2)5CH3, or
more complex molecules, it should only be assigned in prin-
ciple.6 Here, we deduced that peaks 11 and 12 may be the rst-
order combination bands of na(CH2) + db(CH2) and ns(CH2) +
db(CH2). In addition, peak 13 was specic for L-Glu. It may be
assigned to the rst-order combination bands of n(CH) +
dip(CH). The detailed information is listed in Table 2. In addi-
tion, interval 30 included the interference of combination of ns
HB bridge and dip HB bridge at 4282 cm−1 (combination mode
of symmetric stretching and in-plane deformation for the
double hydrogen bonded O–H/O bridge), which in theory
contributed mainly to the increase in NIRS baseline.21 Hence,
the [n(CH)] + [d(CH)] type was also not a wise choice for quan-
titative analysis.

In the absorption region of [n(CH)] + [2d(CH)] type, or the
intervals 26–29, they are much weaker than that of the bands in
the rst-order overtones or combinations, as observed from the
spectra in Fig. 3(B and C). It was difficult to assign these bands
to relevant n(CH) and d(CH) modes, since the second-order
combination bands of the [n(CH)] + [2d(CH)] type may be
inuenced by a delicate structural difference in CH2.6 Here,
peaks 8 and 9 were roughly assigned to [n(CH2) + 2d(CH2)] in
Table 2. However, the absorption group in the 4500–5850 cm−1

region was very complex and diversied. In this region, it
included not only the [n(CH)] + [2d(CH)] type, but also the
combination mode of water molecules (interval 28), combina-
tion overtone of nas(NH3

+) and d(NH3
+) (interval 29) and a series

of combination overtone from R–COOH, as discussed above.
Only part of interval 26 was undoubtedly attributable to the
combination of [n(CH)] + [2d(CH)].

In the absorption region of [2n(CH)] type, or intervals 25–26,
whose intensity is the second strongest among C–H vibration
absorption. For CH2X2, CH2XCHX2, and CH3(CH2)5CH3, they
both share the normal modes including 2na(CH2), na(CH2) +
ns(CH2) and 2ns(CH2). The distinct bands 6015, 5941 and
5876 cm−1 in Fig. 3(B and C) should be assigned to the above-
mentioned three normal modes. Peak 7, or 5783 cm−1, has
the biggest intensity with the increasing separation from the
adjacent peak. From this behavior, peak 7 was assigned to the
second-order combination of n(CH2) + 2d(CH2) and was
enhanced by the Fermi resonance.6 Peak 6 or 5845 cm−1 was
unique to L-Glu, and it was assigned to 2n(CH). In general, the
region of [2n(CH)] type was less affected by other functional
groups in wavenumber and it has sufficient sensitivity and
hydrophobic properties, which could act as the effective func-
tional group for quantitative analysis in water.

For the second-order combination of [2n(CH)] + [d(CH)] type
or second-order overtone of CH stretching vibrations, the
occurrence probabilities of triple frequency are very low, so it
has a very low signal-to-noise ratio. For example, you can see the
Anal. Methods
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3n(CH2) peak 1 at 8747 cm−1 in Fig. 3(B and C), and it is not
suitable for quantitative analysis in theory. Hence, the intervals
selected by NSGAII were redundant.

For further analyses of the cause of redundant wavenumber,
in Table S3,† it was found that the latent variables (LVs) selected
by NSGAII are 15 for GABA and 14 for L-Glu. Latent variables of
PLSR model are other important inuencing factors besides the
spectral pre-treatment method. Too many latent variables will
cause the risk of over-tting. Here, 14 or 15 LVs are too large.
Therefore, the RMSEC of PLSR vs. optimal LV plot is displayed
in Fig. 4(A). From Fig. 4(A), it can be found that four LVs are
enough to build the calibration model. More variables could not
further improve the performance of the model. In contrast, it
would cause the risk of over-tting. Therefore, for the NSGAII
algorithm, the LVs will be set to 4 in the future research. Fig. 4(B
and C) shows the regression coefficients for GABA and L-Glu
Fig. 4 (A) RMSEC versus the numbers of latent variables of PLS regression
coefficients for the calibration of L-Glu.

Anal. Methods
under four LVs. It can be found that some intervals are indeed
redundant. Only intervals 25, 26 were suitable for the quanti-
tative analysis of GABA and interval 26 was suitable for L-Glu.
Interestingly, on interval 26, the regression coefficients of GABA
and L-Glu are the opposite numbers. This phenomenon can also
be understood that when L-Glu is transformed into GABA, the
content of L-Glu is decreased and that of GABA is increased.

Finally, it can be concluded that [n(CH2) + 2d(CH2)] and
[2n(CH2)], where the wavenumber ranged from 6165 to
5683 cm−1, or intervals 25, 26 were the inuential functional
groups for the quantitative analysis of L-Glu and GABA.

3.3 Wavenumber point quantication using the NSGAII-
CARS algorithm

Building a simple and efficient PLSR model for multicompo-
nent determination is necessary to make the miniaturized
. (B) Regression coefficients for the calibration of GABA. (C) Regression

This journal is © The Royal Society of Chemistry 2023
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Table 3 Comparison of three different wavenumber selection algorithms

Compound Method Pre-treatment Intervals nVar LVs RMSECV RMSEP Mean R2(cal) R2(val)

GABA NSGA-II Der1 + detrend 2, 7, 3, 17, 18, 24–27 567 4 2.03 4.52 79.49 0.9980 0.9900
GABA CARS Der1 + detrend 21, 29, 30 15 5 1.24 5.18 79.49 0.9994 0.9868
GABA NSGA-II-CARS Der1 + detrend 25, 26 18 4 1.09 3.31 79.49 0.9996 0.9946
L-Glu NSGA-II Der1 + detrend 12, 24, 26 189 4 0.87 1.09 19.00 0.9959 0.9947
L-Glu CARS Der1 + detrend 21, 22, 26, 28, 29, 30 64 8 0.53 1.64 19.00 0.9992 0.9880
L-Glu NSGA-II-CARS Der1 + detrend 26 6 2 0.70 1.66 19.00 0.9976 0.9877
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instrument, and this decreases the equipment costs. Given this,
some innovative wavelength selection algorithms have been
developed to search for the specic ngerprint points.23,24

NSGAII and regression coefficient analysis has made us realize
that intervals 25, 26 were the inuential functional groups for
quantitative analysis. However, these large wavelength variables
(including 126 variables in two intervals and 63 variables in one
interval) made the spectral resolution still complicated, and it
has not achieved the aim of ne distinction between CH2 in
GABA and CH in L-Glu. Therefore, to search for the specic
Fig. 5 (A) Near-infrared spectra of the binary mixed system in the 6165
GABA. (C) Regression coefficients for the calibration of L-Glu.

This journal is © The Royal Society of Chemistry 2023
ngerprint points from the selected intervals by NSGAII, the
CARS algorithm was adopted with its advantage of enforced
variable reduction. Different from the NSGAII algorithm, which
is based on the principle of genetic evolution, the CARS algo-
rithm retains the wavelengths with large absolute regression
coefficients in the PLSR model. It should be noted that the
disadvantage of CARS is that the serious over-tting will occur
when some uninformative variables (or no chemical dependent
information) but with large absolute regression coefficients are
introduced.25 When the CARS algorithm was combined with
–5683 cm−1 region. (B) Regression coefficients for the calibration of

Anal. Methods
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Fig. 6 (A) Fitted values vs. true values for GABA in the validation set. (B) Fitted values vs. true values for L-Glu in the validation set.
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NSGAII, NSGAII remedied the disadvantages of CARS. NSGAII
rst located the optimal informative quantitative regions, under
which CARS searched for its specic ngerprint points. In
Table 3, the NSGAII algorithm is compared with the NSGAII-
CARS algorithm, and it is observed that similar tting results
(RMSEP, R2) are achieved by these two kinds of algorithms.
However, NSGAII-CARS requires even fewer points to fulll the
task of excellent prediction. The CARS algorithm is also
compared with the NSGAII-CARS algorithm, and the CARS
method also displays a good tting effect. For GABA, CARS used
only 15 points to fulll the full-spectrum quantitative effect, but
the tting effect is worse than that of NSGA-II-CARS. For L-Glu,
the number of points used by CARS is a little more than that
used by NSGA-II-CARS, but the tting effect is better than that of
NSGA-II-CARS. The selected points by CARS include intervals
21, 22, 29, 30 (from 7137–6655 and 4343–4224 cm−1); 7137–
6655 cm−1 is the zone of rst overtone of the O–H stretch caused
by water, and 4343–4224 cm−1 is the zone of [n(CH)] + [d(CH)]
combination overtone, however, this zone also included the
interference of combination of ns HB bridge and dip HB bridge at
4282 cm−1. Hence, intervals 21, 22, 29, 30 selected by CARS are
not a wise choice for the quantitative analysis of the molecular
mechanism underlying absorption in NIRS. NSGA-II does not
recommend these intervals, but advises intervals 25, 26. In
a word, CARS and NSGA-II-CARS both give a good tting effect,
but they select different intervals according to their own algo-
rithm theory.

Fig. 5(A) depicts the NIRS outline from 6165 to 5683 cm−1

and C–H band assignments in the region of [2n(CH2)] type. As
you can see from Fig. 5(B), CARS selects the points from
2na(CH2), na(CH2) + ns(CH2) and 2ns(CH2) for GABA. From
Fig. 5(C), CARS selects the points from 2ns(CH2) and 2n(CH) for
L-Glu. Compared with the previous results, the NSGAII-CARS
algorithm not only pointed out the effective quantitative func-
tional groups but also used only 6 points for L-Glu and 18 points
for GABA to achieve the full-spectrum quantitative effect. The
Anal. Methods
models were built based on the 71 samples collected in the rst
batch of biotransformation with these wavenumber points ob-
tained by the NSGAII-CARS algorithm. In addition, 70 samples
collected in the second batch of biotransformation were used as
the validation. Fig. 6(A) and (B) shows the tting effects for
GABA and L-Glu in the validation. Excellent tting effects
conrm the feasibility of the NSGAII-CARS algorithm.

4. Conclusion

Because of the large number of overlapping vibrational vari-
ables from NIRS, in most cases, its applications were almost
based on the mathematical treatments of the data but not on
analytical knowledge or chemical information that the NIRS
could give. In the present work, the NSGAII-CARS algorithm was
developed to understand the band assignments of CH2 and CH
groups. NSGAII is capable of searching for the different char-
acteristic spectral regions of the binary or ternary mixed systems
by extreme points according to the Pareto front plane. CARS is
capable of providing the subtle wavenumber point quantica-
tion. Since NSGAII belongs to the population evolutionary
algorithm, it will be time-consuming when facing a huge
number of variables. In this research, the spectral range was
divided into equidistant intervals before NSGAII. However, in
future research, it is better to divide the wavelength range
“personalized” according to these different functional groups (–
COOH, –NH2, –CH2, –CONH–, etc.) appearing in the
compounds. The MATLAB codes for implementing NSGAII-
CARS and binary mixed system dataset are freely available on
the website: https://github.com/Mark1988NK/NSGAII-CARS-
Algorithm.git.
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