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Abstract
Arsenic exerts neurotoxicity and immunomodulatory effects. Studies have shown that the nervous system is not considered 
to be an immune-privileged site. However, the effect of arsenic-induced neuroimmune toxicity has rarely been reported. 
We aimed to investigate the toxic effects of arsenic on the NOD-like receptor family pyrin domain containing 3 (NLRP3) 
inflammasome and the Th1/Th2/Th17/Treg balance in the brain tissue of mice. Mice were exposed to NaAsO2 (0, 2.5, 5, 
and 10 mg/kg) for 24 h. Our results showed that 10 mg/kg arsenic exposure significantly decreased brain and hippocampal 
indices (p < 0.05). The mRNA and protein levels of the blood‒brain barrier (BBB) tight junction protein occludin were 
decreased in the 5 and 10 mg/kg arsenic-treated groups. Compared with those in the control group, NLRP3 protein levels 
in 10 mg/kg arsenic-treated mice, caspase-1 protein levels in 2.5, 5, and 10 mg/kg arsenic-treated mice, and IL-1β protein 
levels in 5 and 10 mg/kg arsenic-treated mice were increased in the hippocampus (p < 0.05). In addition, arsenic induced a 
hippocampal inflammatory response by upregulating the mRNA levels of the proinflammatory factors IL-6 and TNF-α and 
downregulating the mRNA level of the anti-inflammatory factor IL-10. Moreover, arsenic decreased the mRNA levels of the 
Th1 and Th2 transcription factors T-bet and GATA3 and the cytokines IFN-γ and IL-4 and increased the mRNA levels of the 
Th17 transcription factor RORγt and the cytokine IL-22 (p < 0.05). Collectively, our study demonstrated that arsenic could 
induce immune-inflammatory responses by regulating the NLRP3 inflammasome and CD4+ T lymphocyte differentiation. 
These results provide a novel strategy to block the arsenic-induced impairment of neuroimmune responses.
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Introduction

Arsenic is classified as a group I human carcinogen by the 
International Agency for Research on Cancer (IARC) [1]. 
The brain is one of the major target organs for arsenic poi-
soning because arsenic can cross the blood‒brain barrier 
(BBB) and enter the brain [2]. Epidemiological reports 
have demonstrated that arsenic exposure could affect intel-
lectual and cognitive function in children [3, 4]. Zhou et al. 
showed that postnatal days 4–10 (P4–P10) rats exposed to 
arsenic showed deficits in learning and social skills, as well 
as abnormal morphologic changes in the external granular 
layer and external pyramidal layer [5]. In addition to its neu-
rotoxicity, arsenic is toxic to immune organs, immune cells, 
and immune molecules [6, 7]. The traditional theory is that 
the nervous system is an immune-privileged compartment 
due to the presence of the BBB and the blood-cerebrospinal 
fluid barrier [8]. Neuroimmunological studies showed that 
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the nervous system is not an immune-privileged site. In con-
trast, nervous system contains many immune cells (micro-
glia, astroglia, and lymphocytes), associated with the innate 
immune system and adaptive immune system, which play 
important roles in physiological and pathological processes. 
However, some studies have focused on the effects of inor-
ganic arsenic on neuroimmunotoxicity.

Inflammation participates in the occurrence and develop-
ment of many diseases, including neurological diseases and 
injuries. Wistar rats exposed to 10 mg/kg sodium arsenate 
for 8 days showed significant increases in the mRNA levels 
of the inflammatory markers IL-1β, TNF-α, and IFN-γ in the 
hippocampus [9]. In addition, some neurodegenerative pro-
cesses, such as Alzheimer’s disease (AD), vascular demen-
tia (VAD), Parkinson’s disease (PD), and multiple sclerosis 
(MS), were shown to be associated with neuroinflammation 
and immune dysregulation [10]. The NLRP3 inflammasome, 
which is a major component of innate immunity that con-
sists of NLRP3, the adaptor protein ASC, and the protease 
caspase-1, plays a critical role in immune homeostasis and 
inflammation [11]. Moreover, the activation of the NLRP3 
inflammasome could play an important role in a number of 
neurological injuries and diseases. In the Gulf War Illness 
rat model, the NLRP3 inflammasome was markedly acti-
vated, and NLRP3 and caspase-1 expression, as well as the 
secretion of the inflammatory cytokines IL-1β and IL-18, 
was increased in the hippocampus [12]. CD4+ T cells are 
essential for mediating adaptive immunity in response to a 
variety of xenobiotics [13]. CD4+ T cells can differentiate 
into T helper cells, including Th1, Th2, Th17, and regulatory 
T cells (Tregs) [14]. In Alzheimer’s disease, an imbalance 
in Th17 and Tregs occurs, which is characterized by high 
levels of the cytokines IL-17 and IL-23 and decreased levels 
of TGF-β and IL-35 in the cerebral cortex and hippocampus, 
which may be associated with cognitive impairment [15].

To date, the immunomodulatory and inflammatory poten-
tial of arsenic in the nervous system has not been extensively 
investigated in vivo. In the present study, we first examined 
the inflammatory response and NLRP3 inflammasome 
activation in the hippocampus. Moreover, BBB alterations 
and CD4+ T lymphocyte differentiation were examined. 
The resultant findings provide experimental evidence of 
inorganic arsenic-induced neuroimmune toxicity and have 
implications for the development of preventive and correc-
tive targets to treat arsenic-induced neurotoxicity.

Methods and Materials

Reagents and Chemicals

Sodium arsenite (≥ 99.0%) was obtained from Sigma Chemi-
cal Co. (St. Louis, MO, USA). Real-time polymerase chain 

reaction (real-time PCR) kits were obtained from Takara 
Co. (Otsu Japan). RIPA lysis buffer and BCA protein assay 
kits were supplied by Beyotime Biotechnology (Beyotime, 
Shanghai, China). Primary antibodies against NLRP3 and 
caspase-1 were purchased from Cell Signaling Technology 
(Cell Signaling, Danvers, USA); CD4, occludin, and IL-1β 
were purchased from Wanleibio (Wanleibio, Shenyang, 
China); and the corresponding secondary antibodies were 
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, 
USA). All other chemicals used were of analytical grade.

Animals and Experimental Procedures

Six-week-old female C57BL/6 mice weighing 18–22 g were 
purchased from Beijing Vital River Laboratory Animal 
Technology (Beijing, China) (National Animals Use License 
Number: SYXK2019-0005). Animal use was approved by 
the Animal Use and Care Committee of Shenyang Medi-
cal College (protocol number: SYYXY2020031201). The 
mice were group-housed in stainless steel cages (10 mice 
per cage) in an air-conditioned room with a temperature of 
22 ± 2 ℃ and a 12-h light/dark cycle for 1 week before the 
experiment. All laboratory mice had free access to a mainte-
nance diet (Beijing Vital River Laboratory Animal Technol-
ogy, Beijing, China) and drinking water ad libitum before 
and throughout the procedure.

The dose of NaAsO2 was selected based on previously 
published studies [16], as well as our preliminary experi-
ments. The mice were intragastrically administered 0, 
2.5, 5, and 10 mg/kg NaAsO2 for 24 h. At the end of the 
experiment, all mice were weighed and deeply anesthetized. 
Orbital blood was collected in heparinized vials and centri-
fuged (3000 × g, 4 ℃) for 10 min. The obtained serum was 
frozen at − 80 ℃ for analysis. The entire brain was promptly 
removed and weighed, and the hippocampal region was iso-
lated and stored at − 80 ℃ for biochemical analysis.

Calculation of Brain and Hippocampus Indices

Brain and hippocampus indices were calculated according 
to the following formula: (tissue weight∕body weight) × 100.

Total RNA Isolation and Real‑Time PCR Analysis

Total RNA was isolated from the hippocampus with TRI-
zol reagent (Invitrogen, USA). RNA (500 ng) was reverse 
transcribed into cDNA and amplified using Takara reagents 
(Takara, Japan) according to the manufacturer’s protocol. 
Then, PCR amplification was performed by SYBR Premix 
ExTaq II kits (Takara, Japan). PCR was performed using 
the following thermal cycling conditions: 95 ℃ for 30 s, 
followed by 40 cycles of denaturing at 95 ℃ for 5 s and 
annealing at 60 ℃ for 30 s. PCR was performed using the 
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primers listed in Table 1. The 2−ΔΔCt values were calculated 
to represent the expression levels of different target genes.

Western Blot Analysis

Total proteins were extracted from the hippocampus by 
commercial kits, and protein concentrations were quanti-
fied by a bicinchoninic acid (BCA) protein kit (Beyotime, 
Shanghai, China). Forty-five micrograms of total protein 
was boiled for 3 min at 100 ℃ before being separated by 

7.5–10% SDS‒PAGE and then transferred to a 0.22 µm 
polyvinylidene fluoride (PVDF) membrane (Amersham, 
Buckinghamshire, UK). After being blocked for 2 h at room 
temperature, the membranes were probed with primary anti-
bodies against occludin, NLRP3, caspase-1, IL-1β, CD4, 
and β-actin (1:1000) at 4 ℃ overnight. Finally, the mem-
branes were incubated with the corresponding secondary 
antibodies (1:5000) for 2 h at room temperature. The blots 
were detected with chemiluminescence reagents (PicoWest 
Super Signal, Pierce Biotechnology, IL, USA) and visual-
ized using an electrophoresis gel imaging analysis system 
(MF-ChemiBIS 3.2, DNR Bio-Imaging Systems, Israel). 
β-actin (1:5000) was used as the internal control.

Statistical Analysis

The data are expressed as the mean ± SD and were evaluated 
by one-way analysis of variance (ANOVA) using SPSS 25.0 
statistical analysis software. p < 0.05 was considered to be 
statistically significant.

Results

General Status of the Study Mice

In our study, the mice were intragastrically administered 
2.5, 5, and 10 mg/kg NaAsO2 for 24 h. All animals sur-
vived to the end of the experiment. As shown in Table 2, we 
found no changes in body weight or brain and hippocampal 
weights among the different groups. Compared with those 
in the control group, the brain and hippocampus indices 
were decreased in the arsenic-treated groups, and there was 
a significant difference only in the 10 mg/kg arsenic-treated 
group (p < 0.05).

Acute Arsenic Exposure Induces an Inflammatory 
Response in the Hippocampus

As shown in Fig. 1, the expression of the proinflammatory 
factors IL-6 and TNF-α was increased in the hippocampi of 

Table 1   Primer sequences used in the real-time PCR

Gene Primer sequences Product length

Occludin (F):TTG​AAA​GTC​CAC​CTC​CTT​ACAGA​
(R):CCG​GAT​AAA​AAG​AGT​ACG​CTGG​

129 bp

IL-6 (F):CTG​CAA​GAG​ACT​TCC​ATC​CAG​
(R):AGT​GGT​ATA​GAC​AGG​TCT​GTTGG​

131 bp

TNF-α (F):CCC​CAA​AGG​GAT​GAG​AAG​TTC​
(R):GGC​TTG​TCA​CTC​GAA​TTT​TGAGA​

101 bp

IL-10 (F):GGG​GCC​AGT​ACA​GCC​GGG​AAA​
(R):CTG​GCT​GAA​GGC​AGT​CCG​CA

92 bp

T-bet (F):TCA​ACC​AGC​ACC​AGA​CAG​AGA​
(R):TCC​ACC​AAG​ACC​ACA​TCC​AC

185 bp

GATA3 (F):CTA​GGC​CAT​TCG​TAC​ATG​GAA​
(R):GGA​TAC​CTC​TGC​ACC​GTA​GC

134 bp

RORγt (F):ACG​GCC​CTG​GTT​CTC​ATC​A
(R):CCA​AAT​TGT​ATT​GCA​GAT​GTT​

CCA​C

80 bp

Foxp3 (F):CAG​CTC​TGC​TGG​CGA​AAG​TG
(R):TCG​TCT​GAA​GGC​AGA​GTC​AGGA​

190 bp

IFN-γ (F):AAG​CGT​CAT​TGA​ATC​ACA​CCTG​
(R):TGA​CCT​CAA​ACT​TGG​CAA​TACTC​

201 bp

IL-4 (F): AAA​ATC​ACT​TGA​GAG​AGA​TCA​
TCG​G

(R):GTT​GCT​GTG​AGG​ACG​TTT​GG

102 bp

IL-22 (F):CGA​CCA​GAA​CAT​CCA​GAA​GAA​
(R):GAG​ACA​TAA​ACA​GCA​GGT​CCA​

293 bp

TGF-β (F):TGT​GGA​ACT​CTA​CCA​GAA​ATA​
TAG​C

(R)GAA​AGC​CCT​GTA​TTC​CGT​CTC​

133 bp

GAPDH (F):TGT​GTC​CGT​CGT​GGA​TCT​GA
(R):TTG​CTG​TTG​AAG​TCG​CAG​GAG​

150 bp

Table 2   The body weights, as well as the weights and indices of the brain and hippocampus in mice

C57BL/6 mice were intragastrically administered 0, 2.5, 5, and 10 mg/kg NaAsO2 for 24 h, and the brain and hippocampus were removed and 
weighed. The brain and hippocampus indices are expressed as the brain or hippocampus weight/body weight. The results are expressed as the 
mean ± SD (n = 10). *p < 0.05 compared with control mice

Experimental group Body weight (g) Brain weight (g) Brain index (%) Hippocampus 
weight (g)

Hippocampus index (%)

Control 18.86 ± 0.86 0.49 ± 0.05 2.61 ± 0.29 0.03 ± 0.01 0.18 ± 0.03
2.5 mg/kg NaAsO2 18.69 ± 1.11 0.45 ± 0.05 2.40 ± 0.27 0.03 ± 0.00 0.15 ± 0.03
5 mg/kg NaAsO2 18.78 ± 1.00 0.45 ± 0.04 2.41 ± 0.18 0.03 ± 0.01 0.16 ± 0.03
10 mg/kg NaAsO2 18.52 ± 0.61 0.45 ± 0.02 2.45 ± 0.11* 0.03 ± 0.01 0.16 ± 0.03*



	 H. Jing et al.

1 3

arsenic-treated mice compared with control mice (p < 0.05). 
Arsenic also downregulated the mRNA levels of the anti-
inflammatory factor IL-10 in the hippocampus (p < 0.05).

Acute Arsenic Exposure Activates the NLRP3 
Inflammasome in the Hippocampus

The NLRP3 inflammasome has been shown to play a vital 
role in the innate immune response. As shown in Fig. 2, 
the protein expression of NLRP3 was increased in the hip-
pocampi of 10 mg/kg arsenic-treated mice (p < 0.05). Cas-
pase-1 expression was increased by 64.85%, 89.55%, and 
81.93% in the 2.5, 5, and 10 mg/L arsenic-treated groups, 
respectively (p < 0.05). In addition, arsenic increased the 
protein levels of the NLRP3-regulated cytokine IL-1β in the 
hippocampus in the 5 and 10 mg/L arsenic-treated groups 
(p < 0.05).

Acute Arsenic Exposure Induces Blood‒Brain 
Barrier Disruption in Mice

Occludin, which is a tight junction protein, was used to 
assess BBB permeability. Occludin mRNA levels were 
decreased in the hippocampus after 5 and 10 mg/kg arsenic 
exposure (Fig. 3A). Treatment with 5 and 10 mg/kg arse-
nic also decreased the protein levels of occludin in the hip-
pocampus (p < 0.05) (Fig. 3B).

Acute Arsenic Exposure Destroys the Th1/Th2/Th17/
Treg Balance in the Hippocampus

Once the BBB is damaged, peripheral T cells can enter 
the brain. Therefore, we next analyzed the levels of 
CD4+ T lymphocytes in the hippocampus in arsenic-
exposed mice by western blotting. As shown in Fig. 4A, 
arsenic markedly increased the protein expression of 
CD4 in the hippocampus in the 2.5, 5, and 10 mg/kg 
arsenic-treated groups (p < 0.05). We next analyzed the 
differentiation of CD4+ T lymphocytes in the hippocam-
pus. Arsenic decreased the mRNA levels of the Th1 
transcription factor T-bet and the cytokine IFN-γ in the 
2.5, 5, and 10 mg/kg arsenic-treated groups (p < 0.05). 
The mRNA levels of the Th2 transcription factor GATA3 
and the cytokine IL-4 were downregulated in the 2.5, 
5, and 10 mg/L arsenic-treated groups compared with 
the control group (p < 0.05). In contrast, Th17 transcrip-
tion factor ROR-γt was significantly increased by 4.65%, 
60.04%, and 59.19%. The Th17 cytokine IL-22 was 
increased by 15.44%, 53.54%, and 178.56% in the 2.5, 
5, and 10 mg/kg arsenic-treated groups, respectively. 
However, we found no change in the Treg transcription 
factor Foxp3 or the cytokine TGF-β between the control 
group and arsenic-treated groups (p > 0.05).

Fig. 1   Effect of acute arsenic 
exposure on the expression of 
inflammatory factors in the hip-
pocampus. C57BL/6 mice were 
intragastrically administered 0, 
2.5, 5, and 10 mg/kg NaAsO2 
for 24 h. The mRNA levels of 
IL-6 (A), TNF-α (B), and IL-10 
(C) were assessed by real-time 
PCR. The results are expressed 
as the mean ± SD (n = 4). 
*p < 0.05 compared with control 
mice, #p < 0.05 compared with 
25 mg/L arsenic-treated mice
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Discussion

The present study examined the effect of acute arsenic expo-
sure on hippocampal inflammatory responses and CD4+ 
T cell subpopulation differentiation in a C57BL/6 mouse 
model. The mice were intragastrically administered sodium 
arsenite for 24 h, and arsenic-exposed animals showed 
marked decreases in indices in the brain and hippocampus, 
which suggests neurotoxicity due to acute arsenic exposure. 
The mechanisms may be associated with arsenic-induced 
apoptosis [17] and altered DNA damage [18].

It has been reported that arsenic exposure can induce 
robust inflammation in the brain. Arsenic treatment increases 
the expression levels of the proinflammatory cytokines inter-
leukin 1 beta (IL-1β), IL-6, interferon gamma (IFN-γ), and 
TNF-α in cultured microglia and astrocytes [19, 20]. In 
our study, mice that were treated with 2.5, 5, and 10 mg/
kg arsenic for 24 h showed marked increases in the levels 

of the inflammatory factors IL-6 and TNF-α and decreased 
IL-10 mRNA levels. Wu et al. showed that 2–8 mg/kg arse-
nic trioxide exposure could decrease the anti-inflammatory 
markers IL-4 and IL-10 and increase the proinflammatory 
markers TNF-α, IL-1β, IL-18, IL-2, IL-6, INOS, and COX-2 
in the brains of ducks [2]. These findings suggested that 
stimulation of inflammatory cytokines could be involved in 
arsenic-induced neurotoxicity.

The NLRP3 inflammasome is an important component 
of the innate immune system. In response to activation, 
Asc recruits procaspase-1 through interactions with the 
CARD domain of caspase-1. Caspase-1 then facilitates 
IL-1β and IL-18 maturation, which ultimately leads to the 

Fig. 2   Effect of acute arsenic exposure on the NLRP3 inflammasome 
in the hippocampus. C57BL/6 mice were intragastrically adminis-
tered 0, 2.5, 5, and 10  mg/kg NaAsO2 for 24  h. The expression of 
NLRP3, caspase-1, and IL-1β in hippocampus (A) and the corre-
sponding quantitative analysis (B) were assessed by western blotting, 
and β-actin was used as the loading control. The results are expressed 
as the mean ± SD. *p < 0.05 compared with control mice

Fig. 3   Effect of acute arsenic exposure on blood‒brain barrier per-
meability in mice. C57BL/6 mice were intragastrically administered 
0, 2.5, 5, and 10 mg/kg NaAsO2 for 24 h. The mRNA levels of occlu-
din (A) were assessed by real-time PCR. The expression of occludin 
in the hippocampus (B) and the corresponding quantitative analysis 
(C) were assessed by western blotting, and β-actin was used as the 
loading control. The results are expressed as the mean ± SD (n = 4), 
and three independent experiments were performed. *p < 0.05 com-
pared with control mice
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Fig. 4   Effect of acute arsenic 
exposure on the expression of 
inflammatory factors in the hip-
pocampus. C57BL/6 mice were 
intragastrically administered 0, 
2.5, 5, and 10 mg/kg NaAsO2 
for 24 h. The expression of CD4 
in the hippocampus (A) and 
the corresponding quantitative 
analysis (B) were assessed by 
western blotting, and β-actin 
was used as the loading control. 
The mRNA levels of the T lym-
phocyte-specific transcription 
factors T-bet (C), Gata3 (E), 
RORγ-t (G), and Foxp3 (I), as 
well as the signature cytokines 
IFN-γ (D), IL-4 (F), IL-22 
(H), and TGF-β (J), in the 
hippocampus were assessed by 
real-time PCR. The results were 
expressed as the mean ± SD 
(n = 4). *p < 0.05 compared with 
control mice
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inflammatory response and tissue damage [21]. Our study 
showed that caspase-1 is more expressed in 5 mg/kg arsenic 
group compared to the 10 mg/kg arsenic group. We thought 
it may be caused by a phenomenon called hormesis, which is 
ubiquitously existed upon certain toxicants exposure charac-
terized by a low-dose stimulation, while high-dose inhibition 
effects. Consequently, the increased effect of caspase-1 in 
high dose of arsenic exposure (10 mg/kg) would be lower 
than in low-dose group (5 mg/kg). Furthermore, the NLRP3 
inflammasome is implicated in both neuroinflammation and 
cognitive impairment in neurodegenerative diseases [12]. 
Yang et al. found that 5 and 10 mg/kg sodium arsenite expo-
sure for 7 days resulted in the activation of NF-κB p65 and 
the NLRP3 inflammasome, as well as the upregulation of 
IL-1β and IL-6 expression in the livers of mice [22]. Huang 
et al. found that following 8 weeks of exposure to 2,5-hexan-
edione (HD), the protein levels of NLRP3, ASC, caspase-1, 
and IL-1β in the brain and spinal cord homogenates of rats 
exposed to 400 mg/kg HD were significantly increased 
[23]. Our present findings showed activation of the NLRP3 
inflammasome in the hippocampus. These results suggested 
that the NLRP3 inflammasome could be involved in the neu-
roimmune abnormalities by arsenic.

The blood‒brain barrier is critical for maintaining nerv-
ous system homeostasis and protects the nervous system 
from toxins, inflammation, and injury [24]. Occludin is one 
of the major components of tight junctions (TJs), which 
can maintain paracellular permeability [25]. In our study, 
the mRNA and protein levels of occludin were markedly 
decreased after arsenic exposure in the hippocampus. Man-
thari et al. found that 15 mg/L As2O3 exposure in drinking 
water resulted in the significant downregulation of occludin 
mRNA and protein expression in the cerebral cortex and 
hippocampus in PND 42 mice [26]. Wang et al. found that 
chronic arsenic exposure decreased occludin mRNA and 
protein levels [27]. These studies suggested that arsenic 
could damage BBB integrity, which can ultimately damage 
the nervous system.

Our results showed that arsenic caused blood‒brain bar-
rier disruption in the hippocampus (Fig. 3), which could 
result in T cell and other immune cell infiltration into 
the nervous system and induce an immune-inflammatory 
response [28]; thus, we further focused on the levels of T 
cells in the hippocampus. It has been reported that the num-
ber of lymphocytes is increased in autism spectrum disor-
der (ASD) brains compared to control brains, and CD3+ T 
lymphocytes predominate over CD20+ B lymphocytes and 
CD8+ T lymphocytes predominate over CD4+ T lympho-
cytes [29]. In our study, CD4 protein levels were increased 
in the hippocampi of arsenic-treated mice. CD4+ T cells 
can differentiate into Th1, Th2, Th17, and Treg cells, so we 
also examined CD4+ T cell subpopulation differentiation in 
the hippocampus. It has been reported that Th1/Th2 Th17/

Treg imbalance is associated with neurological diseases 
and injuries, including multiple sclerosis (MS), rheuma-
toid arthritis (RA), and necrotizing encephalitis [30, 31]. 
In ASD, dysregulation of Th1, Th2, Th17, and Treg cells 
is characterized by high levels of T-bet, GATA, and RORγt 
and decreased Foxp3 expression in the brain, which may 
be associated with cognitive impairment [32]. Our results 
showed that arsenic decreased the Th1 transcription fac-
tor T-bet and the cytokine IFN-γ and the Th2 transcription 
factor GATA3 and the cytokine IL-4 in the hippocampus; 
however, the change was much more pronounced for Th2 
cytokines than Th1 cytokines, suggesting that acute arse-
nic treatment induced Th1-polarized immune responses 
in the hippocampus. Some studies have shown that arse-
nic induced the downregulation of Th1 cytokines and Th2 
cytokines [33]. Another study reported that arsenic increased 
Th1 cytokines and upregulated Th2 cytokines [6]. These 
disparities in the literature might be associated with differ-
ent arsenic doses and durations, as well as diverse effector 
organs. It has also been reported that Th17 cells contribute to 
autoimmunity and inflammation, while Treg cells maintain 
immune homeostasis [34]. Huang et al. observed that Th17 
cell levels were increased, whereas Treg cell levels were 
decreased in the brains of MCAO rats compared with the 
ratio in sham-operated rats. Moreover, 2-(-2-benzofuranyl)-
2-imidazoline reciprocally regulated the Th17/Treg balance 
induced by ischemic stroke in rats [35]. We found that the 
mRNA levels of the Th17 transcription factor RORγt and the 
cytokine IL-22 were dramatically increased in hippocam-
pal homogenates. Taken together, these results suggest that 
arsenic induced abnormalities in CD4+ T cell subpopula-
tions, including the polarization of Th1 subpopulations, and 
increased Th17 cells, providing a deeper understanding of 
arsenic-induced neuroimmune imbalance.

Conclusions

In the current study, we conclusively showed that arsenic 
induced neuroimmune toxicity by inducing inflammation, 
activating NLRP3 inflammasomes, and modulating CD4+ T 
lymphocyte subpopulation differentiation. Our findings pro-
vide a novel target for treating arsenic-induced neurotoxicity. 
Further studies are needed to identify the mechanisms of 
neuroimmune toxicity and develop novel therapeutic strate-
gies to protect against the neurotoxicity of arsenic exposure.
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