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The phosphorylation modification of whey protein, an important nutrient of milk, has a key role in functional
regulation. However, differences in the phosphorylation modifications of exclusive whey proteins in human and
bovine milk are not known. In this study, phosphoproteomics analysis of exclusive whey proteins was performed
in human mature milk (HM) and bovine mature milk (BM). 52 whey phosphoproteins and 128 phosphorylation
sites were identified in HM, with Osteopontin phosphorylation sites being the most abundant. 59 whey phos-
phoproteins and 151 phosphorylation sites were identified in BM, with Osteopontin and Alpha-S2-casein
phosphorylation sites having the highest number. The results indicate that phosphoproteins mainly play roles
in immune defense, coagulation regulation and transmembrane signaling synergy in HM, and are mainly asso-
ciated with immune regulation in BM. The most strongly interacting phosphoproteins in HM and BM were Serum
albumin and Heat shock protein HSP 90-alpha (HSP 90-alpha), respectively. These results suggest functional
differences between HM and BM whey phosphoproteins and enhance our understanding of the exclusive phos-
phoprotein sites. This study provides a theoretical basis and technological targets at the molecular level for the
development of functional dairy products and infant formulas.

Bovine mature milk
Whey phosphoprotein
Site

Biological function

1. Introduction

Milk is a source of high-quality protein, which consists of two main
groups: casein and whey proteins (F. Zhu, 2024). Whey protein is an
important functional component of mammalian milk, which not only
provides essential amino acids and nutritional support for newborns
(Tsakali et al., 2023), but also participates in immune regulation, in-
testinal development, and metabolic regulation through a variety of
biologically active components (e.g., immunoglobulins, lactoferrin,
growth factors, etc.) (Dullius et al., 2018; Olvera-Rosales et al., 2023).
Whey proteins are widely used in infant formulas, baking, sports
nutrition and other products (J. C. Li & Zhu, 2024). The percentage of
whey protein in human milk is the largest, up to 60-80 % (X. Li et al.,
2025). As the ideal food for infants (Wang et al., 2020), human milk is
irreplaceable in terms of composition, function and post-translational
modification of its components for infant growth and development,
immune maturation and metabolism (Andres et al., 2023; J. Zhu &
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Dingess, 2019). Although human milk is the ideal food for infants, some
mothers may have insufficient breastmilk, in which case infant formula
can temporarily replace breastmilk. Bovine milk is the main basic raw
material of infant formula milk powder. Because the composition ratio
of its macronutrients is relatively close to that of human milk and can be
further adjusted through standardization to simulate the nutritional
composition of human milk (Yu et al., 2025). All infant formulas are
modeled after human milk. Therefore, understanding the differences
between HM and BM whey proteins can provide a theoretical basis for
optimizing infant formulas that are closer to breast milk.
Post-translational modifications occur in most proteins and are the
main cause of changes in protein structure, function and properties
(Javitt & Merbl, 2023). Post-translational modifications regulate pro-
cesses such as metabolism, protein localization and turnover, signal
transduction (Dutta & Jain, 2023). As one of the central forms of
post-translational modifications, phosphorylation modifications are
widely found in proteins (Duan et al., 2020). It profoundly affects the
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nutritional properties and biological functions of proteins by regulating
their conformation, stability and interactions (Muneer et al., 2025; Rout
& Verma, 2021). Protein phosphorylation occurs mainly on serine (Ser),
threonine (Thr) and tyrosine (Tyr) residues (X. B. Chen et al., 2022).
Mature milk provides a sustainable supply of nutrients and adaptive
growth support, especially bovine milk, which is a core component of
the dairy industry. Phosphoproteomic analysis focuses on analyzing the
biological functions, differences in nutritional properties, and potential
applications of protein phosphorylation modifications. Therefore, it is
necessary to perform phosphoproteomic analysis of whey proteins in
HM and BM.

Although modern infant formula milk is close to breast milk in terms
of the composition of macronutrients such as protein and fat, there is
still a significant gap in bioactive ingredients (Lonnerdal, 2016). Studies
have shown that casein phosphorylation promotes the dissolution and
absorption of minerals (calcium, iron) (Y. M. Zhang et al., 2024). Lac-
toferrin, an important component of whey proteins, has been shown to
affect cellular metabolism by modulating the phosphorylation of pro-
teins such as AKT (Moreno-Navarrete et al., 2009). Bovine milk is
currently the main protein source for formula, but its phosphorylation
modifications differ from breast milk. It has been shown that human
milk milk fat globule membrane (MFGM) phosphoproteins are mainly
involved in developmental regulation and immune-related functions,
whereas bovine milk MFGM phosphoproteins are more significantly
involved in signaling response functions (X. Y. Liu, Bai, et al., 2025).
However, the analysis of cross-species phosphorylation differences of
whey proteins still needs further systematic studies.

We provide valuable information to the dairy industry in order to
“humanized” infant formulas and close the gap between formula and
breast milk in terms of immunity. In this paper, we applied label-free
quantitative techniques for phosphoproteomic analysis of whey pro-
teins in HM and BM. We have applied bioinformatics to analyze the
identified whey phosphoproteins, phosphorylation sites and biological
functions. Understanding the phosphorylation of whey proteins between
species may provide new insights in the optimization and development
of infant milk powders. Our study is the first to show exclusive phos-
phoproteins and phosphorylation sites in HM and BM. The results pro-
vide information to better mimic human milk and to promote the
transformation of milk powder from “nutritional replacement” to “bio-
functional replication”.

In general, our results not only reveal the functions and species dif-
ferences of whey proteins, but also provide a scientific basis for dairy
processing optimization and nutritional fortification. In this paper,
phosphoproteomics analysis of whey proteins in HM and BM was per-
formed, but the functional study of whey proteins needs to be further
researched, and we hope that scholars will conduct in-depth research on
the sites of whey phosphorylated proteins in the future.

2. Materials and methods
2.1. Collection of two types of milk samples

The human milk samples were donated by 45 healthy mothers aged
between 25 and 30 years. Bovine milk samples were collected from 45
Holstein cows (aged 3.5-4 years old and weighing 550-650 kg) at
Huishan Farm, Shenyang, Liaoning, China. These cows ate the same food
and lived in the same environment. All human donors have been
screened, including (1) no chronic diseases; (2) Do not smoke; (3) No
antibiotics have been used within one month. The cows are selected
from the same production batch and are milked at exactly the same time.
The 45 samples were divided into 3 groups of 15 each mixed to produce
3 representative samples. The study was approved by the Ethics Com-
mittee of Shenyang Agricultural University (approval number
[24060502]) and the Medical Ethics Committee (approval number [Y
(2024)232]).
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2.2. Extraction and digestion of two whey proteins

HM and BM samples were removed from the refrigerator (—80 °C)
and thawed to room temperature (25 °C). These samples were processed
by centrifugation (12000x g, 4 °C, 15min) aiming at removing milk fat.
Centrifugation again (15000xg, 4 °C, 1h) yielded whey protein, the
concentration of which was measured by the Caumas Brilliant Blue
method. Two samples were taken and 10 mmol/L DTT (37 °C, 2.5h) was
added to each sample and brought down to room temperature (25 °C).
Subsequently, 50 mmol/L IAA was added and protected from light for
30 min. Then 5-fold volume of water was added separately to dilute the
concentration of UA lysate to 1.5 M. Trypsin was added in the ratio of
1:50 (37 °C digestion for 18h). Finally, it was desalted using a Sep-Pak
C18 column and lyophilized.

2.3. Peptide enrichment

The peptides were put into the buffer for re-solution. The solution
was shaken for 40 min after addition of TiOy beads, followed by
centrifugation (12000xg, 4 °C, 15min). The beads were collected and
washed three times with buffers I and II. Finally, the phosphorylated
peptides were collected by elution with elution buffer.

2.4. LC-MS/MS

Data were obtained by Thermo Q-Exactive mass spectrometer and
Easy nano-Liquid Chromatography system. Each sample was redissolved
in 0.1 % formic acid solution. The mobile phase consisted of 0.1 formic
acid acetonitrile aqueous solution. The concentrations of acetonitrile in
mobile phases A and B were 2 % and 84 %, respectively. The C18 column
(Thermo EASY column SC200 150 pm*100 mm) was equilibrated with
mobile phase A, while mobile phase B performed a gradient elution. The
linear gradient of liquid B ranged from 0 % to 55 % at 0 min-115 min,
from 55 % to 100 % at 115 min-120 min, and was maintained at 100 %
at 120 min-125 min. The enzymatic products were separated by capil-
lary HPLC and mass spectrometry analysis was performed by a Q-
Exactive mass spectrometer (Thermo Finnigan). The mass spectrometer
takes 125 min to acquire data. It mainly detects positive ions and has a
scanning range of 300-1800 m/z for precursor ions. MS! and MS? have
resolutions of 70,000 and 17,500 at M/Z 200, respectively.

2.5. Data analysis

LCMS/MS data are imported into Maxquant software for library
search (UniProt). Main parameters: MS/MS tolerance ppm: 20; Missed
cleavage: 2; Enzyme: Trypsin; Main search ppm: 6; Variable modifica-
tion: Oxidation (M), Acetyl (Protein N-term), Phospho (STY); Peptide
and Protein FDR: 0.01; Fixed modification: Carbamidomethyl (C).
MaxQuant was used to calculate PTM scores, localization probabilities,
and quantization values.

2.6. Bioinformatics and results analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses of whey proteins were performed using the DAVID
online database in conjunction with the WeiShengXin online platform.
The STRING database was combined with Cytoscape software for
protein-protein interaction (PPI) analysis. MeMe and Weblogo were
used for motif analysis. All results analysis was done using Office and
Prism.

3. Results
3.1. Identification of whey phosphoproteins in HM and BM

In this study, we used a label-free quantitative technique for



H. Yuetal

phosphoproteomic analysis of whey proteins in HM and BM. In this
analysis, we chose two and more results from three replicate experi-
ments to analyze the phosphorylation sites. 52 whey phosphoproteins
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Table 1
The number of top ten phosphoproteins and phosphorylation sites in HM and
BM.

and 128 phosphorylation sites in HM and 59 whey phosphoproteins and UniProt Description Gene Number of HM/
151 phosphorylation sites in BM were identified (Table S1). There were accession phosphorylation BM
283 and 336 phosphorylation-modified peptides in HM and BM, sites
respectively (Fig. 1A). Among the identified proteins (Table 1), Osteo- P10451 Osteopontin SPP1 24 HM
pontin (P10451) was the most abundant in HM with 24 phosphorylation Po5814 Beta-casein CSN2 7 HM
sites which were $215, $219, 5228, $254, $258, 5263, 5267, $270, $243, e oy 1oeopondn o : g
$275, S280, S191, S195, S24, S26, S27, S76, S62, S63, T227, T237, A6NMO1 DNA polymerase POLA1 4 HM
T185, T190, and Y225. Osteopontin (P31096) was also the most abun- Q6WN34 Chordin-like protein ~ CHRDL2 4 HM
dant in BM with 23 phosphorylation sites which were $211, $216, S220, 2
$193, S194, 5197, S223, S228, S188, S167, S171, $23, 524, S26, S27, Q3LGBO Ostewznﬁn SPP1 4 HM
S76, $60, $62, $63, T191, T161, T166 and T22. This was followed by Q86TD3 f);f:;opmtem . Sppl 3 HM
Alpha-S2-casein (BM) with 17 phosphorylation sites. These sites were P01833 Polymeric PIGR 3 HM
$258, $23, 524, S25, S28, S31, S71, S72, S73, S76, S46, S52, T145, T153, immunoglobulin
T18, S150 and S68 on Alpha-S2-casein. The mass error of all whey receptor
phosphorylation-modified peptides was less than 6 ppm (Fig. 1B), P01042 Kininogen-1 KNGI 3 HM
indicating the reliability of the data. The distribution of whey phos-  boscos Osteopontin i 2 o
indicating the reliability € data. stribution ol whey phos P02663 Alpha-82-casein CSN1S2 17 BM
phorylation sites in HM and BM is shown in Fig. 1C, and one site oc- P02662 Alpha-S1-casein CSN1S1 9 BM
cupies the largest proportion in both. The number of three sites is higher P80195 Glycosylation- GLYCAM1 5 BM
than two sites in HM, while the number of four sites is greater than three dependent cell
sites in BM. Ser, Thr, and Tyr are phosphorylation sites, and Ser is the adhesion molecule 1
Tt ’ . P02666 Beta-casein CSN2 4 BM
most predominant in HM and BM, 85.2 % and 86.1 %, respectively. Tyr 018836 Growth/ MSTN 3 BM
was the smallest percentage with 3.9 % and 2 % respectively (Fig. 1D differentiation factor
and E). Fig. 2A and B are visualizations using Weblogo, centered on the P00711 Alpha-lactalbumin LALBA 3 BM
phosphorylation site and flanked by 15 amino acids on each side. Fig. 2C P02672 F;be“Ogen alpha FGA 8 EM
chain
and D shows the probability of phosphoprotein sites appearing in HM P12763 Alpha-2-HS- AHSG 3 BM
and BM. The major phosphorylation motifs are analyzed in Fig. 2E and F. glycoprotein
Fig. 2G and H are the global motif analyses for human and bovine milk. P18892 Butyrophilin BTN1A1 3 BM
subfamily 1
A HM B C HM|
BM 354 BM|
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500 50
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400 25
250
g 300 g 204
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£ “ 2
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Fig. 1. Analysis of whey phosphoproteomics. (A) The number of proteins, sites and modified peptides. (B) Mass error analysis of phosphorylation-modified peptides.
(C) The number of phosphorylation sites on phosphoproteins. The percentage of Ser, Thr and Tyr phosphorylation sites on whey phosphoproteins in HM (D) and

BM (E).
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3.2. GO analysis of exclusive whey phosphoproteins in HM and BM

GO analysis was performed on whey Phosphoproteins, which were
classified based on the DAVID online database in terms of biological
processes, cellular components, and molecular functions (Fig. 3A and B).
We focused on a comparative analysis of the gene functions of the
exclusively phosphoproteins in HM and BM, respectively. In terms of
biological processes, HM whey phosphoproteins are mainly involved in
signal transduction, and BM is mainly engaged in response to dehy-
droepiandrosterone. In terms of cellular components, extracellular space
is mainly involved in HM and extracellular region in BM. In terms of
molecular function, it is mainly involved in identical protein binding in
HM and calcium ion binding in BM. Chordal plots were visualized
showing the number of phosphoproteins (Fig. 3C and D). There are 33
phosphorylation sites of six proteins involved in signal transduction in
the HM, which are S297 on Complement C3 (P01024, C3), S96 and T95
on Tumor necrosis factor ligand superfamily member 10 (P50591,
TNFSF10), S215, S219, S228, S254, S258, S263, S267, S270, S243,
S275, S280, S191, S195, S24, S26, S27, S76, S62, S63, T227, T237,
T185, T190 and Y225 on Osteopontin (P10451, SPP1), S80 on SPARC-
like protein 1 (Q14515, SPARCL1), S332 and T327 on Kininogen-1
(P01042, KNG1), S627, S629 and S630 on Polymeric immunoglobulin
receptor (P01833, PIGR). There are 35 phosphorylation sites of five
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proteins in the BM involved in response to 11-deoxycorticosterone and
response to dehydroepiandrosterone. These phosphorylation sites are
S$258, S23, S24, 525, S28, S31, S71,S72, S73, S76, S46, S52, T145, T153,
T18, S150 and S68 on Alpha-S2-casein (P02663,CSN1S2), S59 on kappa-
casein (P02668,CSN3), S88, S89, and S95 on Alpha-lactalbumin
(P00711, LALBA), S103, S56, S130, S79, S81, S82, S83, S90, S6 and
Y106 on Alpha-S1-casein (P02662, CSN1S1), S30, S32, S33 and S34 on
Beta-casein (P02666, CSN2). The number of phosphoproteins in HM that
are mainly engaged in extracellular space and identical protein binding
are 25 and 8, respectively. The number of phosphoproteins in the BM
that are primarily involved in extracellular region and calcium ion
binding are 15 and 7, respectively.

3.3. KEGG analysis of exclusive whey phosphoproteins in HM and BM

KEGG analysis was performed on whey phosphoproteins in HM and
BM, which are Complement and coagulation cascades and Various types
of N- glycan biosynthesis in HM, and Complement and coagulation
cascades, Protein processing in endoplasmic reticulum and Galactose
metabolism in BM (Fig. 4A and B). Significantly enriched in HM were
Complement and coagulation cascades (phosphoprotein genes for C3,
FGA, KNG1), and in BM were Complement and coagulation cascades
(C3, FGA, CFI, KNG1) and Protein processing in endoplasmic reticulum
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Fig. 3. GO analysis of the phosphoproteome. GO analysis of whey phosphoproteins in HM (A) and BM (B). Chord diagrams for HM (C) and BM (D) (gene names on

the top, GO terms on the bottom).
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Complement and coagulation cascades and Protein processing in endoplasmic reticulum (D). The blue and orange boxes in the pathway are the identified

phosphoproteins.

(HSP90AA1, 0S89, SIL1, HSP90B1) (Fig. 4C and D). Phosphoprotein sites
in HM associated with Complement and coagulation cascades are S297
on Complement C3, S364 on Fibrinogen alpha chain, S332 on
Kininogen-1 and T327. Phosphoprotein sites associated with Comple-
ment and coagulation cascades in BM are S967 and S1321 on Comple-
ment C3, S517, S518, and S578 on Fibrinogen alpha chain, S51 on
Uncharacterized protein, and S331 on Kininogen-1. Meanwhile, the
phosphoprotein sites related to Protein processing in endoplasmic re-
ticulum are S263 on HSP 90-alpha, S148 and T55 on Nucleotide ex-
change factor SIL1, S532 on Protein 0S-9, and S604 and S607 on
Endoplasmin. Table S2 demonstrates the phosphoproteins and their
sites, GO and KEGG.

3.4. PPI analysis of exclusive whey phosphoproteins in HM and BM

PPI network analysis of whey phosphoproteins in HM and BM was

performed using the STRING database and combined with Cytoscape
software, respectively (Fig. 5A and B). Fig. 5C, D shows the PPI analysis
of the top ten whey phosphoproteins in HM and BM. There are 36
proteins and 183 interactions in HM, with the most strongly interacting
proteins being Serum albumin (ALB) and Mucin-1 (MUC1). The two
phosphoprotein sites are S82 on Serum albumin and $1229 on Mucin-1.
There are 40 proteins and 226 interactions in BM, with the strongest
interacting proteins being HSP 90-alpha (HSP90AA1) and Nucleobindin
2 (NUCB2). The phosphoprotein sites are S263 on HSP 90-alpha and
§196 on Nucleobindin 2.

4. Discussion
We have performed phosphoproteomic analysis of whey proteins in

HM and BM using label-free quantitative techniques. The phosphory-
lation sites were identified and analyzed from three aspects of GO, KEGG
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SLC34A2
NUCB1

Fig. 5. PPI analysis of the phosphoproteome. PPI analysis of whey phosphoproteins in HM (A) and BM (B). The larger the red circle, the stronger the protein
interaction. PPI analysis of the top ten whey phosphate proteins in HM (C) and BM (D).

and PPI by bioinformatics analysis. Phosphorylation modification is an
important part of protein research and has not been reported up to now
regarding exclusive whey phosphoproteins in HM and BM. Our research
results are based on a strictly screened internal database. In this study,
52 whey phosphoproteins, 128 phosphorylation sites and 283
phosphorylation-modified peptides were identified in HM. There are 59
whey phosphoproteins, 151 phosphorylation sites and 336
phosphorylation-modified peptides in HM. The research results provide
further insight into the role of whey proteins among different species as
well as new ideas for future dairy powder design.

Osteopontin (P10451) was found to be the most abundant of the 52
phosphoproteins identified in HM in our study, with 24 phosphorylation
sites. Osteopontin (P31096) was also found to be the most abundant of
the 59 phosphoproteins in BM, with 23 phosphorylation sites. Osteo-
pontin is a multifunctional phosphorylated glycoprotein that is highly
phosphorylated on Ser and Thr residues (Hu et al., 2021). Osteopontin is
present in different tissues, milk and urine. It is widely engaged in a
variety of biological processes, such as cell adhesion, migration, immune
regulation, signaling, and tissue repair (Leung et al., 2025; C. Liu, Xia,
et al.,, 2025). It plays a role in infant immunomodulation and gut
development (Demmelmair et al., 2017; McClanahan et al., 2024).
Casein consists of four types, beta-casein, gamma-casein,
alpha-S1-casein, and alpha-S2-casein, of which alpha-S2-casein is the

most phosphorylated of the casein molecules, and can be detected in
bovine milk but not in human milk (Hassanin et al.,, 2022).
Alpha-S2-casein is highly hydrophilic, which helps to stabilize it in the
body. It has many phosphorylation sites and can bind calcium ions to
promote bone health (Mohsin et al., 2020; Treweek et al., 2011).
However, alpha-S2-casein is an allergen, which binds to IgE antibodies
causing the body to become sensitized (Z. Liu et al., 2024). Since
alpha-S2-casein is a highly phosphorylated protein, it can be detected. In
our study, alpha-S2-casein has been detected with 17 phosphorylation
sites.

ALB (Serum albumin) is a typical whey protein detected in human
milk, and it has a site at S82. LALBA (Alpha-lactalbumin) and LGB (Beta-
lactoglobulin) are typical whey proteins detected in bovine milk. The
three phosphorylation sites of LALBA are S89, S88 and S95 respectively,
and one phosphorylation site of LGB is S126. ALB belongs to the low
molecular weight proteins together with other whey protein compo-
nents (e.g. LALBA, LGB) to constitute the high nutritional value of whey
protein, providing essential amino acids. LALBA is a calcium-binding
protein that aids in the absorption of minerals in infants. It function-
ally focuses on infant neurodevelopment and sleep enhancement
(Layman et al., 2018; X. Li et al., 2025). BLG contains all the essential
amino acids that the human body needs, especially branched-chain
amino acids, which support the growth and development of infants.
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However, BLG is one of the major bovine milk allergens that may trigger
milk protein allergy in infants (Surucu & Abaci, 2020).

Our motif analysis of the modified peptides showed that all enriched
motifs conformed to the SxE pattern, with serine (S) being highly
conserved. This pattern is consistent with the classical substrate motifs
of protein kinase CK2 (PhosphoSitePlus database), suggesting that CK2
may mediate phosphorylation at these sites. In the future, the phos-
phorylation function of SxE and its contribution to related signaling
pathways need to be verified through kinase activity experiments and
site mutations.

GO analysis of whey phosphoproteins was performed to compare the
functions of unique phosphoproteins in different species. Signal trans-
duction is the core mechanism of cellular perception of the environment
and regulation of life activities, which can transmit external signals,
coordinate multicellular functions, regulate development, and partici-
pate in diseases (B. S. Chen & Wu, 2012; Morimoto, 2024; Uda & Kur-
oda, 2016). Dehydroepiandrosterone is a steroid hormone secreted by
the adrenal glands and is one of the most abundant steroid hormones in
the human body (Miyazaki et al., 2016). It has important roles in
anti-aging, anti-tumor, metabolism, regulation of endocrine and im-
mune systems (Krysiak et al., 2021; Wang et al., 2024). In our study, in
terms of biological processes, HM is mainly involved in signal trans-
duction, with 33 phosphorylation sites of six phosphoproteins (P01024,
P50591, P10451, Q14515, P01042, P01833) in this function annotated.
BM is mainly involved in Dehydroepiandrosterone, with 35 phosphor-
ylation sites of five phosphoproteins (P02663, P02668, P00711,
P02662, P02666) annotated in this function. The extracellular space is
the dynamic microenvironment outside the cell and consists of the
extracellular matrix and intercellular fluid. The extracellular matrix is a
multifunctional dynamic platform that, at the physical level, maintains
structure and transmits substances; at the informational level, stores
signals and regulates cells; and at the pathological level, is involved in
cancer, fibrosis, and neurodegenerative diseases (Ge et al., 2024; M. Li
et al., 2020; Sant et al., 2020; Zamecnik et al., 2004). The extracellular
region is the space outside the cell membrane and contains components
such as extracellular space, secreted proteins and signaling molecules.
Calcium ions are key signaling molecules and structural regulators in-
side and outside the cell. Calcium ion binding is the binding of calcium
ions to specific proteins involved in cell signaling, regulation of enzyme
activity, structural stabilization, and pathological processes (Chang
et al., 2025; Grzybowska, 2018; Jing et al., 2018). In terms of cellular
components, HM is mainly involved in the extracellular space, with 25
phosphoproteins annotated in this function, and BM is mainly in the
extracellular region, with 8 phosphoproteins in this function. In terms of
molecular function, HM is mainly involved in identical protein binding,
with 15 phosphoproteins annotated in this function, and BM is mainly
engaged in calcium ion binding, with 7 phosphoproteins for this func-
tion. By GO analysis, we can further understand the function of whey
phosphoproteins that are exclusive in human and bovine milk.

Our KEGG analysis of whey phosphoproteins revealed that Com-
plement and coagulation cascades were dramatically enriched in HM.
Remarkably enriched in BM were Complement and coagulation cascades
and Protein processing in endoplasmic reticulum. Complement and
coagulation act synergistically in infection and injury, but aberrant
activation may lead to thrombosis, inflammation, or autoimmune dis-
ease. The Complement system is activated via the classical, lectin and
bypass pathways and has a role in immune defense and clearance of
pathogens. In addition, it produces allergenic toxins (C3a and C5a) that
promote an inflammatory response. Coagulation cascades are beneficial
in hemostasis and vascular repair, relying on the coagulation-
anticoagulation dynamic balance (Gultom & Rieben, 2024; Strohbach
& Busch, 2021). Protein processing in endoplasmic reticulum is a core
aspect of cellular life activities, where every step from synthesis, folding,
modification to quality control is precisely regulated to ensure the cor-
rect function and localization of proteins. Abnormalities in its func-
tioning can lead to neurodegenerative diseases, metabolic disorders and
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cancer (Beriault & Werstuck, 2013; J. S. Wu et al., 2016). C3(Comple-
ment C3) may provide immunoprotection by stabilizing C3 convertase
and enhancing complement-mediated pathogen clearance (Sahu &
Lambris, 2001). FGA (Fibrinogen alpha chain) is a key component of
blood clots. After vascular injury, it is hydrolyzed by thrombin protein
and converted into fibrin to participate in the hemostasis process
(Asselta et al., 2007). KNG1(Kininogen-1) is closely related to coagula-
tion, inflammation and immune regulation (B. Zhang et al., 2023). CFI
(Complement factor I) may negatively feedback inhibit complement
activation and prevent excessive inflammatory damage (Hallam et al.,
2023). In our study, HM has four phosphorylation sites of three proteins
involved in the Complement and coagulation cascades, which are S297
on Complement C3, S364 on Fibrinogen alpha chain, S332 and T327 on
Kininogen-1. There are seven phosphorylation sites of four proteins in
BM involved in the Complement and coagulation cascades, these are
$967 and S1321 on Complement C3, S517, S518 and S578 on Fibrinogen
alpha chain, S51 on Uncharacterized protein, and S331 on Kininogen-1.
There are six phosphorylation sites of four proteins involved in Protein
processing in endoplasmic reticulum, these are S263 on HSP 90-alpha,
S532 on Protein 0S-9, S148 and T55 on Nucleotide exchange factor
SIL1, S604 and S607 on Endoplasmin. In summary, both human and
bovine milk whey phosphoproteins showed roles in Complement and
coagulation cascades, and more can be learned about the effects of
changes in sites on them in the future.

PPI analysis of human and bovine milk whey phosphoproteins to
provide clues for functional studies of the proteins. Serum albumin
(ALB) is the most plentiful in mammalian plasma and is synthesized
primarily by the liver. It safeguards collective homeostasis through
mechanisms such as regulation of osmotic pressure, transport of sub-
stances, and antioxidants. It is also a marker for disease diagnosis
(Jahanban-Esfahlan & Amarowicz, 2025; Malik et al., 2024). Mucin-1
(MUC1) is a transmembrane glycoprotein and belongs to the mucin
family. It plays a key role in a number of physiological and pathological
processes, maintaining the epithelial barrier and immune homeostasis in
physiological states, but is a key factor in promoting malignant pro-
gression under pathological conditions (especially cancer) (Cao et al.,
2017; Yang et al., 2023). HSP 90-alpha (HSP90AA1) is a central regu-
lator of the cellular stress response, which maintains protein homeo-
stasis and has also been implicated in cancer development and immune
regulation (Hazra et al., 2023; J. X. Wu et al., 2020; T. T. Zhang et al.,
2021). Nucleobindin 2 (NUCB2) has roles in appetite regulation and
energy metabolism (Zhou et al., 2022). In our results, sites S82 on Serum
albumin and S1229 on Mucin-1 were found in HM. S263 on HSP
90-alpha and S196 on Nucleobindin 2 were found in BM. Further studies
can be conducted in the future for changes in the sites on these phos-
phoproteins that may affect their function.

The sites of exclusive phosphoproteins in HM and BM identified in
this study, especially the modification sites on immune-related proteins
(e.g., Complement C3, Kininogen-1, etc.), may play a key role in
immune-protective functions. The results of this study have significant
implications for the development of infant formula milk powder. At
present, formula milk powder mainly focuses on the simulation of pro-
tein composition and content, while ignoring the differences in post-
translational modifications such as phosphorylation. Future formula
design should consider introducing key whey phosphoproteins or
mimicking their function to better replicate the immunoprotective
properties of human milk. Meanwhile, the specific phosphorylation
profile of bovine milk whey proteins provides a molecular basis for the
development of immunomodulatory functional dairy products for
adults. The limitation of this study is that functional validation of these
phosphorylation modifications needs to be performed in ex vivo exper-
iments. It is suggested that future research should: (1) carry out in vitro
functional experiments on whey phosphoproteins; (2) conduct animal
model studies to verify their physiological functions; and (3) explore the
effects of industrial processing on the phosphorylation status of whey
proteins to provide a basis for optimization of dairy product processing.
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5. Conclusion

In this study, label-free quantitative techniques were used for phos-
phoproteomic analysis of whey proteins in HM and BM. 52 whey
phosphoproteins and 128 phosphorylation sites were identified in HM.
151 phosphorylation sites on 59 whey phosphoproteins were identified
in BM. The analysis of phosphoproteins from GO, KEGG and PPI showed
that in HM they mainly play a synergistic role in immune defense,
coagulation regulation and transmembrane signaling, and in BM they
are mainly associated with immune regulation. These findings help us to
further understand the functional differences between whey phospho-
proteins in HM and BM. This study provides valuable information on the
processing of functional dairy products and the greater “humanization”
of infant formula. The functions of these phosphoproteins can be further
verified by in vivo and in vitro experiments in the future.
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