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Abstract
Thyroid cancer (THCA) is one of the most common malignancies of the endocrine 
system. Exosomes have significant value in performing molecular treatments, eval-
uating the diagnosis and determining tumor prognosis. Thus, the identification of 
exosome-related genes could be valuable for the diagnosis and potential treatment of 
THCA. In this study, we examined a set of exosome-related differentially expressed 
genes (DEGs) (BIRC5, POSTN, TGFBR1, DUSP1, BID, and FGFR2) by taking the 
intersection between the DEGs of the TCGA-THCA and GeneCards datasets. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses 
of the exosome-related DEGs indicated that these genes were involved in certain 
biological functions and pathways. Protein‒protein interaction (PPI), mRNA‒
miRNA, and mRNA-TF interaction networks were constructed using the 6 exosome-
related DEGs as hub genes. Furthermore, we analyzed the correlation between the 6 
exosome-related DEGs and immune infiltration. The Genomics of Drug Sensitivity 
in Cancer (GDSC), the Cancer Cell Line Encyclopedia (CCLE), and the CellMiner 
database were used to elucidate the relationship between the exosome-related DEGs 
and drug sensitivity. In addition, we verified that both POSTN and BID were upreg-
ulated in papillary thyroid cancer (PTC) patients and that their expression was corre-
lated with cancer progression. The POSTN and BID protein expression levels were 
further examined in THCA cell lines. These findings provide insights into exosome-
related clinical trials and drug development.
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Introduction

Thyroid cancer (THCA) stands as the most prevalent endocrine malignancy, and 
it has become the fastest rising cancer worldwide in terms of its incidence. Previ-
ous findings have shown that THCA is the 5th most common malignancy after 
breast cancer, lung cancer, colorectal cancer, and cervical cancer in females. In 
China, THCA incidences have surged over recent decades. Treatments for THCA 
include resection and radioactive iodine therapy; however, there is no effective 
treatment for refractory THCA. More recently, biomarker-driven therapies were 
speculated to be promising treatments for a subset of THCA (Fan et  al. 2019; 
Pozdeyev et  al. 2018). Hence, it is urgent to better understand the underlying 
mechanisms of THCA progression, which might enhance the diagnosis and effec-
tive treatments of this disease.

Extracellular vesicles (EVs) include exosomes, microvesicles, apoptotic bod-
ies, and viral particles (Jiang et  al. 2017; Nolte-’t Hoen et  al. 2016; Xie et  al. 
2019). In particular, exosomes have attracted much attention in recent years. 
Exosomes are extracellular vesicles 30–150 nm in diameter that are derived from 
the fusion of multivesicular endosomes, generated by endosomal membranes 
and released into the extracellular space (Gan et al. 2020; Villarroya-Beltri et al. 
2016; Xie et  al. 2019). Biologically, exosomes are an important source of pro-
teins that mediate cell-to-cell communication and modulate the tumor microen-
vironment (Allenson et  al. 2017; Lang et  al. 2018). A number of studies have 
reported that exosomes have significant value in terms of performing molecular 
treatments, evaluating the diagnosis of THCA and determining the prognosis of 
THCA (1988; Capriglione et  al. 2022; Maggisano et  al. 2022; Xin et  al. 2022; 
Zou et al. 2020). Consequently, exosomes have emerged as important factors in 
elucidating the underlying disease mechanisms and identifying diagnostic and 
therapeutic strategies for THCA.

Advanced molecular and bioinformatics technologies have led to the confirma-
tion of many novel biomarkers in THCA (Agarwal et  al. 2021). In addition, in 
THCA, genetic genomic analyses were performed on the TCGA cohort, with a 
focus on differential genes, oncogenic drivers, pathological classification, molec-
ular subtypes, and so on (Cancer Genome Atlas Research 2014; Ganly et al. 2018; 
Ibrahimpasic et al. 2017; Yoo et al. 2019). Because exosomes can intercellularly 
communicate with and regulate the tumor microenvironment (TME), they can 
be used to diagnose, predict, and treat cancer (Qiu et al. 2021; Wu et al. 2019). 
Understanding the clinical and molecular roles of exosome-based cancer therapy 
is crucial for cancer treatment and prognosis.

The purpose of our study was to identify and evaluate the clinical signifi-
cance of exosome-related genes in THCA patients and explore the mechanisms 
of exosome-related genes in the progression of THCA. First, the DEGs and exo-
some-related genes were intersected to obtain exosome-related DEGs through 
the TCGA and GeneCards databases. The exosome-related DEGs were further 
analyzed by enrichment of Gene Ontology/The Kyoto Encyclopedia of Genes 
(GO/KEGG) analyses. In addition, we constructed a protein‒protein interaction 
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(PPI) network and mRNA–miRNA and mRNA–transcription factor (TF) interac-
tion networks of the exosome-related DEGs. The expression of exosome-related 
DEGs was verified via Gene Expression Omnibus (GEO) data. Furthermore, 
immune infiltration correlation and drug sensitivity analyses were performed. We 
next validated that the DEGs were related to the clinical tissues of thyroid cancer. 
Moreover, the expression and molecular correlation analysis of BID and POSTN 
were evaluated through tissue microarrays (TMAs) of our clinical tissue samples. 
We also examined relative RNA and protein expression levels in thyroid cancer 
cell lines.

Materials and Methods

Data Download

The expression profiles of THCA patients were downloaded from the GEO (http://​
www.​ncbi.​nlm.​nih.​gov/​geo/) database (Barrett et  al. 2013) using the R pack-
ages GEOquery (Davis and Meltzer 2007), and the GSE3467 (He et al. 2005) and 
GSE3678 datasets. The GSE3467 dataset was obtained from Homo sapiens; the 
data type was mRNA, and the data platform used was the GPL570 [HG-U133A_2] 
Affymetrix Human Genome U133A 2.0 Array. There were 18 samples in total, 
including 9 THCA samples (group: THCA) and 9 control samples (group: normal). 
The GSE3678 dataset was obtained from Homo sapiens; the data type was mRNA; 
and the data platform used was the GPL570 [HG-U133A_2] Affymetrix Human 
Genome U133A 2.0 Array. There were 14 samples in total, including 7 THCA sam-
ples (group: THCA) and 7 samples from a control group (group: normal).

In addition, we downloaded the count sequencing data of the TCGA-THCA data-
set from the TCGA (https://​portal.​gdc.​cancer.​gov/) (Tomczak et  al. 2015) through 
the TCGA bio links package (Colaprico et  al. 2016). The data were normalized 
to fragments per kilobase per million (FPKM) values. The TCGA-THCA data-
set included a total of 568 samples, including 510 THCA samples (group: THCA) 
and 58 control samples (group: normal). The corresponding clinical information 
was downloaded from the UCSC Xena database (http://​genome.​ucsc.​edu), and the 
expression profile data of all the samples were included in subsequent analyses.

The GeneCards database (Safran et  al. 2010) (https://​www.​genec​ards.​org/) pro-
vides comprehensive information on human genes. To obtain exosome-related 
genes, we used the word “exosome” as the search key to obtain the exosome-related 
genes that were identified in the literature (Lin et al. 2022), and the 121 exosome-
related genes (Table  S1) were intersected to obtain 63 exosome-related genes 
(Table S2).

Exosome‑Related Differentially Expressed Genes

We first used the limma package (Ritchie et al. 2015) to normalize the gene expres-
sion profile data of 568 samples in the TCGA-THCA dataset and constructed a PCA 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://genome.ucsc.edu
https://www.genecards.org/
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plot to show the effect before and after normalization. Differential analysis was 
performed to obtain all DEGs with a |logFC|> 1 and a p value < 0.05. The DEGs 
and exosome-related genes were intersected to obtain exosome-related DEGs. The 
expression profile data of exosome-related DEGs in the TCGA-THCA dataset were 
subsequently extracted, and the ComplexHeatmap package was used to construct a 
heatmap to display the gene expression.

GO and KEGG Analysis

GO analysis (Gene Ontology 2015) is a standard method for large-scale functional 
enrichment studies and includes biological process (BP), molecular function (MF), 
and cellular component (CC) analyses. The KEGG (Kanehisa and Goto 2000) and 
Genome databases are widely used for storing information about genomes, biologi-
cal pathways, diseases, and drugs. The clusterProfiler package (Yu et al. 2012) was 
used to perform GO and KEGG annotation analysis on exosome-related DEGs. The 
entry screening criteria p value < 0.05 and FDR value (q value) < 0.05 were con-
sidered statistically significant, and the Benjamini‒Hochberg (BH) correction was 
used.

PPI Network

A PPI network is composed of proteins that interact with each other. The STRING 
database searches for interactions between known and predicted proteins. In this 
study, we used the STRING database to construct a PPI network (minimum required 
interaction score) from the screened exosome-related DEGs (medium confidence 
[0.150]), and we visualized the PPI network model using Cytoscape (Shannon et al. 
2003) (version 3.9.1).

mRNA‒miRNA and mRNA‑TF Interaction Networks

The Starbase database (Li et al. 2014) searches for microRNA targets through high-
throughput CLIP-Seq experimental data and degradome experimental data to pro-
vide a variety of visual interfaces for exploring microRNA targets. The database 
contains a wealth of data for miRNA–ncRNA, miRNA–mRNA, miRNA–RNA, and 
RNA–RNA networks. The miRDB database (Chen and Wang 2020) was used for 
miRNA target gene prediction and functional annotation. We used the Starbase data-
base and miRDB database to predict miRNAs that interact with exosome-related 
DEGs and then evaluated the intersection of the two database results via Cytoscape 
software to construct an mRNA‒miRNA interaction network.

The CHIPBase database (version 2.0) (https://​rna.​sysu.​edu.​cn/​chipb​ase/) (Zhou 
et  al. 2017) identified thousands of binding motif matrices and their binding sites 
from ChIP-seq data of DNA-binding proteins and predicted millions of transcrip-
tional regulatory relationships between TFs and genes. The TF target database 
(http://​bioin​fo.​life.​hust.​edu.​cn/​hTFta​rget) (Zhang et  al. 2020) is a comprehensive 
database of human TFs and their target regulation. We searched for TFs bound to 

https://rna.sysu.edu.cn/chipbase/
http://bioinfo.life.hust.edu.cn/hTFtarget
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exosome-related DEGs through the CHIPBase database (version 2.0) and hTFtarget 
database and visualized them using Cytoscape software.

Verification of the Expression of Exosome‑Related Differentially Expressed Genes

We used the limma package to normalize the GSE3467 and GSE3678 datasets. We 
used THCA samples (group: THCA) and control samples (group: normal) as groups 
to construct exosome-related differential expression group comparisons of gene 
expression differences among the different groups (group: high and group: low) in 
the GSE3467 dataset, the GSE3678 dataset and the TCGA-THCA dataset. These 
comparisons verified the exosome-related differences found in the TCGA-THCA 
dataset of exosome-related DEGs.

Immune Infiltration

Single sample gene set enrichment analysis (ssGSEA) is an extension of GSEA that 
allows one to define an enrichment score for the pairing of a sample and a gene 
set. The infiltration abundance of immune cells in the TCGA-THCA cohort was cal-
culated using the ssGSEA algorithm (Newman et al. 2015). Next, we analyzed the 
correlation between the infiltration abundance of immune cells and exosome-related 
DEG expression.

Drug Sensitivity Analysis of the Exosome‑Related DEGs

The Genomics of Drug Sensitivity in Cancer (GDSC, www.​cance​rRxge​ne.​org) 
(Yang et al. 2013) is the largest public database for determining the drug sensitivity 
and drug response molecular markers of cancer cells. The CCLE database (https://​
porta​ls.​broad​insti​tute.​org/​ccle) (Barretina et  al. 2012) consists of 24 drugs span-
ning 947 cancer cell lines and was used to predict the correlation of specific gene 
expression with drug sensitivity. The CellMiner database (https://​disco​ver.​nci.​nih.​
gov/​cellm​iner/) (Reinhold et  al. 2012) is a public database that contains genomic 
and pharmacological information for conducting analysis. The CellMiner database 
stores the molecular spectrum data of NCI-60 cells and other cancer cell types and 
is currently the most widely used database for cancer drug testing. Based on the 
expression of key genes and the drug data in the GDSC, CCLE, and CellMiner data-
bases, we carried out drug sensitivity analysis on the exosome-related DEGs and 
displayed the results.

Clinical Samples and IHC

A total of 135 PTC tissue samples were collected from the Affiliated Central Hos-
pital of Shenyang Medical College from 2012 to 2018. The samples were classified 
as TNM I, II, III, or IV based on the World Health Organization (WHO) guidelines. 
This study was approved by the Ethical Committee of the First Affiliated Hospi-
tal of Shenyang Medical College. Paraffin-embedded tissue samples were used to 

http://www.cancerRxgene.org
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://discover.nci.nih.gov/cellminer/
https://discover.nci.nih.gov/cellminer/
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construct the tissue microarray (TMA) using a manual tissue microarray (Quick-ray, 
UniTMA, Seoul, South Korea). IHC was performed on the TMA, and the intensity 
scoring standards were described in our previous publication (Wang et  al. 2020). 
The primary antibodies used were rabbit anti-BID polyclonal antibody (1:150; 
10,988–1-AP; PTG, China) and POSTN polyclonal antibody (1:150; 19899-1-
AP; PTG, China). An UltraSensitive TM SP (Mouse/Rabbit) IHC Kit (KIT-9710, 
Maixin, Shenzhen, China) was used to label the tissue.

q‑PCR

Total RNA was isolated using an RNA Easy Fast Kit (TianGen) and quanti-
fied. Then, the RNA was reverse transcribed into cDNA using an RT reagent kit 
(TaKaRa) according to the manufacturer’s protocol. Real-time PCR was performed 
using a CFX Real-Time PCR Detection System (Bio-Rad), and the results were ana-
lyzed with CFX Manager Software (Bio-Rad). Briefly, the reaction mixtures were 
incubated at 95 °C for 15 min; 40 cycles of 95 °C for 5 s; and 60 °C for 35 s; and a 
melt step. The relative target gene expression was determined with the comparative 
delta-delta CT method (2-ΔΔCt). The primer sequences for the human BIRC5 gene 
were 5′CAC​CGC​ATC​TCT​ACA​TTC​A3′ (sense) and 5′CAA​GTC​TGG​CTC​GTT​
CTC​3′ (antisense); for the human POSTN gene, 5′GAC​GGT​GAC​AGT​ATA​ACA​
GT3′ (sense) and 5′GGC​AGA​ATC​AGG​AAT​TAG​GA3′ (antisense); for the human 
TGFBR1 gene, 5′TGA​AGC​CTT​GAG​AGT​AAT​GG3′ (sense) and 5′TGA​CTG​AGT​
TGC​GAT​TAA​TGT3′ (antisense); for the human DUSP1 gene, 5′GTG​GAA​ATC​
CTG​CCC​TTT​3′ (sense) and 5′GAT​GTC​TGC​CTT​GTG​GTT​3′ (antisense); for the 
human BID gene, 5′AGA​AGA​AGT​TGC​TGT​GAA​GA3′ (sense) and 5′TTG​TAT​
CCG​TGG​CTG​AAT​C3′ (antisense); for the human FGFR2 gene, 5′AGA​CTA​CCT​
GGA​GAT​AGC​C3′ (sense) and 5′CTT​CTT​GGT​CGT​GTT​CTT​C3′ (antisense); and 
for the human housekeeping gene α-TUBULIN the primers were 5′TGA​CCT​GAT​
GTA​TGC​CAA​G3′ (sense) and 5′TTA​GTA​TTC​CTC​TCC​TTC​TTCC3′ (antisense).

Cell Culture and Western Blot

The human thyroid carcinoma cell lines TPC1 and K1 were kindly provided by Dr. 
Wei Sun (The First Affiliated Hospital of China Medical University), who purchased 
them from Shanghai HonSun Biological Technology Co., Ltd. BHT101 and B-CPAP 
were purchased from the Cell Bank of the Shanghai Chinese Academy of Sciences. 
The normal thyroid follicular epithelium cell line (nthy-ori3–1) was obtained from 
the American Type Culture Collection (ATCC), and the cells were cultured in RPMI 
1640 medium (Gibco, NY, USA) with 10% fetal bovine serum (FBS; HyClone, UT, 
USA). TPC1 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; 
Gibco, NY, USA) supplemented with 10% FBS. K1 cells were cultured in 50% 
DMEM supplemented with 25% Ham’s F12 medium and 25% MCDB105 supple-
mented with 2 mM glutamine and 10% FBS. BHT101 cells were cultured in 6 ml 
of Glutamax medium (Gibco, NY, USA) and 125 ml of FBS per 500 ml of DMEM. 
B-CPAP cells were cultured in RPMI 1640 medium (87 ml), 10 ml of FBS, 1 ml 
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of NEAA (Invitrogen, USA), 1 ml of Glut Amax (Invitrogen, USA), and 1 ml of 
sodium and pyruvate 100 mM solution (Invitrogen, USA). All the cells were cul-
tured under a 5% CO2 atmosphere at 37 °C. The cells were lysed in RIPA buffer, 
and the total protein concentration was quantified with a BCA kit (P0010, Beyotime, 
Shanghai, China). Samples (20 μg protein) were subjected to SDS‒PAGE and fur-
ther transferred to polyvinylidene fluoride (PVDF) membranes. The PVDF mem-
branes were cut following incubation with primary (BID and POSTN, 1:1000; PTG; 
Tubulin, 1:5000; Abcam) and secondary antibodies (anti-rabbit IgG and anti-mouse 
IgG, 1:5000; Cell Signaling Technology). The immunoblots were visualized using 
an enhanced chemiluminescence (ECL) Western blot detection system.

Statistical Analysis

All the data were processed and analyzed with R software (version 4.2.1). For the 
comparison of two groups of continuous variables, the statistical significance of 
normally distributed variables was estimated by the independent Student t test, and 
the differences between nonnormally distributed variables were analyzed by the 
Mann‒Whitney U test (ice, Wilcoxon rank sum test). The chi-square test or Fish-
er’s exact test was used to compare and analyze the statistical significance of differ-
ences between two groups of categorical variables. All p values were two-sided, and 
p < 0.05 was considered to indicate statistical significance.

Results

Differential Analysis of Exosome‑Related Genes

We first used the limma package to standardize the gene expression profile data of 
568 samples in the TCGA-THCA dataset and constructed a principal component 
analysis (PCA) plot to evaluate the effects of normalization (Fig. 1A, B). A com-
parison of the PCA plots revealed that the differences between the standardized data 
samples slightly decreased. The results are as follows: The TCGA-THCA dataset 
included a total of 1478 DEGs that satisfied |logFC|> 1 and p < 0.05; at this thresh-
old, upregulated genes (|logFC|> 1 and p < 0.05) were associated with 817, and 
downregulated genes (|logFC|< 0 and p < 0.05) were associated with 661. A volcano 
plot was drawn according to the different analysis results of this dataset (Fig. 1C). 
Next, we constructed a Venn diagram by examining the intersection of the DEGs and 
exosome-related genes (Fig.  2D). We obtained 6 exosome-related DEGs (BIRC5, 
POSTN, TGFBR1, DUSP1, BID and FGFR2), extracted the TCGA-THCA dataset 
from the exosome-related DEG expression profile data using the ComplexHeatmap 
package to construct heatmaps (Fig. 1E) and evaluate gene expression. Through the 
heatmap, we found that the expression levels of the DEGs in the different groups 
(THCA and normal) were significantly different.
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GO Functional Analysis and KEGG Pathway Enrichment Analysis

We applied these 6 exosome-related DEGs (BIRC5, POSTN, TGFBR1, DUSP1, 
BID, and FGFR2) to perform GO and KEGG enrichment analyses. The exosome-
related DEGs were upregulated mainly in the BP (cellular response to transform-
ing growth factor beta stimulus, response to transforming growth factor beta, ven-
tricular septum morphogenesis), CC (collagen-containing extracellular matrix, 
excitatory synapse, and spindle microtubule) and MF (growth factor binding, 
transmembrane receptor protein kinase activity and heparin binding). Moreo-
ver, genes associated with hepatitis B, apoptosis-multiple species, the MAPK 

Fig. 1   Volcano plot heatmap of differentially expressed genes in the PCA map before and after TCGA-
THCA normalization and a Venn diagram of exosome-related genes. A PCA plot of the TCGA-THCA 
dataset before normalization. B PCA plot after normalization of the TCGA-THCA dataset. C Volcano 
plot of the differences between the THCA group and the normal group in the TCGA-THCA dataset. D 
Venn diagram of the intersection of DEGs and exosome-related genes in the TCGA-THCA dataset. E 
Heatmap of the expression profile data of exosome-related DEGs in the TCGA-THCA dataset
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signaling pathway, platinum resistance and the colorectal cancer pathway were 
also upregulated. The results of the GO and KEGG analyses were visualized by 
histograms (Fig. 2A) (For specific enrichment results, Table 1).

Fig. 2   GO functional analysis and KEGG pathway enrichment analysis of exosome-related DEGs in 
THCA. A Histogram of GO and KEGG analyses of exosome-related DEGs. B, C Circular network of 
KEGG and GO analysis results of exosome-related DEGs. D Chord plot of the combined logFC results 
of the GO and KEGG analyses of exosome-related DEGs. E Bubble plot of combined logFC results from 
GO and KEGG analyses of exosome-related DEGs
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A network map was drawn according to the results of KEGG pathway enrich-
ment analysis (Fig.  2B) and GO functional enrichment analysis (Fig.  2C). The 
lines indicate the corresponding molecules and annotations of the corresponding 
entries. The larger the node is, the more molecules there are. Finally, we extracted 
the logFC values of the 6 exosome-related DEGs obtained by differential analysis 
of the TCGA-THCA dataset, combined the GO functional enrichment analysis of 
logFC and KEGG pathway enrichment analysis, and analyzed the upregulated of 
the 6 exosome-related DEGs. Based on the results of the set analysis, the logFC 
of the genes was used to calculate the standard score (Z score) corresponding to 
each entry and was visualized by a chord diagram (Fig. 2D) and a bubble diagram 
(Fig. 2E).

Fig. 3   Construction of the PPI, mRNA‒miRNA, and mRNA-TF interaction networks. A PPI network of 
exosome-related DEGs. B mRNA-TF interaction network of exosome-related DEGs and TFs. C mRNA‒
miRNA interaction network of exosome-related DEGs and miRNAs. The blue rectangles are mRNA 
molecules. The purple rectangles are transcription factors (TFs). The yellow circles are miRNA mol-
ecules
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Construction of the PPI Network and the mRNA‑TF and mRNA‒miRNA Interaction 
Networks

Using the STRING database to perform protein‒protein interaction analysis 
of the 6 exosome-related DEGs (BIRC5, POSTN, TGFBR1, DUSP1, BID, and 
FGFR2), we constructed a protein–protein interaction (PPI) network of exo-
some-related DEGs via Cytoscape software (Fig. 3A). The specific PPI network 
relationships are shown in Table S3. We used the CHIPBase database (version 
2.0) and the hTFtarget database to identify TFs, and we subsequently evalu-
ated the intersection of the two databases to construct an mRNA-TF interaction 
network through the use of Cytoscape software for visualization (Fig. 3B). The 
specific mRNA-TF interactions are shown in Table  S4. We predicted miRNAs 
that interact with these 6 exosome-related DEGs (BIRC5, POSTN, TGFBR1, 
DUSP1, BID, and FGFR2) using mRNA‒miRNA data from the Starbase data-
base and the miRDB database. The intersection of the two databases was subse-
quently used to construct the mRNA‒miRNA interaction network via Cytoscape 
software for visualization (Fig.  3C). The specific mRNA‒miRNA interactions 
are shown in Table S5.

Exosome‑Related DEGs in THCA

We first used the limma package to standardize the GSE3467 and GSE3678 
datasets. Six exosomes were obtained from thyroid carcinoma (THCA) samples 
(group: THCA) and control samples (group: normal) as exosome-related differ-
entially expressed genes (exosome-related DEGs) in the GSE3467 (Fig. 4A) and 
GSE3678 (Fig. 4B) datasets.

To verify the expression of exosome-related DEGs (BIRC5, POSTN, 
TGFBR1, DUSP1, BID, and FGFR2), we first analyzed the expression of the 
exosome-related DEGs in THCA samples in comparison with that in normal tis-
sues in the GSE3467 dataset. The results showed that BIRC5, TGFBR1, and BID 
were upregulated in THCA samples. However, FGFR2 and DUSP1 were down-
regulated in THCA tissues compared to normal tissues, but the difference in the 
expression of the POSTN gene was not statistically significant (Fig. 4A). More-
over, based on the GSE3678 data, the expression levels of POSTN, TGFBR1, 
BID and BIRC5P were upregulated in THCA tissues, but the expression lev-
els of DUSP1 and FGFR2 appeared to be downregulated in THCA tissues com-
pared with normal tissues (Fig. 4B). In addition, we further analyzed the mRNA 
expression of exosome-related DEGs in THCA patients from the TCGA dataset. 
The results showed that the BIRC5, POSTN, TGFBR1, and BID expression lev-
els were greater in the THCA group than in the normal group, while DUSP1 
and FGFR2 were expressed at lower levels in the THCA group (Fig. 4C). Taken 
together, these data confirmed that BIRC5, TGFBR1, and BID were upregulated 
in THCA and that DUSP1 and FGFR2 were downregulated.
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Immune Infiltration Correlation Analysis of Exosome‑Related DEGs

First, infiltration of 28 immune cell types in the THCA cohort was determined 
using the ssGSEA method, and a total of 20 immune cells (activated dendritic cells, 
CD56bright natural killer cells, CD56dim natural killer cells, central memory CD4 
T cells, central memory CD8 T cells, effector memory CD4 T cells, eosinophils, 
gamma delta T cells, immature B cells, immature dendritic cells, macrophages, 
MDSCs, memory B cells, natural killer cells, neutrophils, plasmacytoid dendritic 
cells, regulatory T cells, T follicular helper cells, type 1 T helper cells, and Type 

Fig. 4   Group comparison of exosome-related DEGs in the dataset. A Group comparison diagram of exo-
some-related DEGs in the GSE3467 dataset. B Group comparison to the GSE3678 dataset. C Compari-
son of TCGA-THCA cohort data. ns p ≥ 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001
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Fig. 5   Immune infiltration analysis of exosome-related DEGs. A Comparison of immune cells between 
the normal and tumor groups in the TCGA-THCA cohort. B The correlation between exosome-related 
DEGs and immune cell infiltration. C The correlation heatmap for the immune cells. Correlations 
between exosome-related DEGs and D central memory CD4 T cells, E immature B cells, F natural 
killer cells, G regulatory T cells, and H T follicular helper cells. ns p > 0.05; *p < 0.05; ** p < 0.01; 
***p < 0.001
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17  T helper cells) were significantly correlated (p < 0.05) under the grouping of 
THCA and normal (Fig. 5A). Subsequently, the relationship between the exosome-
related DEGs (BIRC5, POSTN, TGFBR1, DUSP1, BID, FGFR2) and immune cell 
infiltration was visualized using a heatmap, and BID was associated with the most 
(20 types) immune cells (Fig. 5B). We demonstrated the correlations among the 20 
immune cells through a heatmap (Fig.  5C). Central memory CD4 T cells, imma-
ture B cells, natural killer cells, regulatory T cells, and T follicular helper cells were 
highly correlated with the other 20 immune cells in the dataset. Therefore, we inves-
tigated the relationship between the above 5 cell lines and exosome-related DEGs 
(Fig. 5D–H).

Drug Sensitivity Analysis of Exosome‑Related DEGs

Changes in the cancer genome strongly affect the clinical response to treatment 
and, in many cases, are effective biomarkers of drug treatment response. For drug 

Fig. 6   Correlation analysis between drug sensitivities and exosome-related DEGs. Overview of drug sen-
sitivity in patients in the A CellMiner dataset, B GDSC dataset, and C CCLE dataset in this study
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sensitivity data, the Genomics of Drug Sensitivity in Cancer (GDSC), Cancer Cell 
Line Encyclopedia (CCLE), and CellMiner databases were used to reveal the rela-
tionship between exosome-related DEGs and drug profiles. We predicted that the 
expression of exosome-related DEGs was correlated with anticancer drug sensitivity 
by the IC50 value and visualized the results in the CellMiner database (Fig. 6A), 
GDSC database (Fig. 6B), and CCLE database (Fig. 6C). The results showed that 
DUSP1 interacted with most of the drug molecules in the three databases; however, 
no drugs were found to interact with TGFBR1 or BID in the GDSC database.

Expression Levels of Exosome‑Related DEGs in PTC Tissues

To further examine the association of exosome-related DEGs, we first validated 
the mRNA expression of the 6 exosome-related DEGs (BIRC5, POSTN, TGFBR1, 
DUSP1, BID and FGFR2; Fig. 7A–F) in 15 PTC tissues and paired adjacent tissues 
by q-PCR and observed that POSTN and BID were upregulated in PTC tissues and 
that DUSP1 and FGFR2 were downregulated; however, neither BIRC5 nor TGFBR1 
was significantly upregulated.

POSTN and BID Expression Levels were Correlated with Clinicopathological 
Outcomes in PTC Patients

We selected the genes (POSTN and BID) upregulated in tumors for further experi-
ments. IHC was used to evaluate the protein expression of POSTN and BID in PTC 
(Fig. 8A, B), and the correlation between clinicopathological features and the rel-
ative expression of the proteins was analyzed. As shown in Table 2, BID expres-
sion was significantly correlated with age (p < 0.001), tumor size (p < 0.001), lymph 

Fig. 7   q-PCR results of exosome-related DEGs in PTC tissues. The mRNA expression levels of A 
BIRC5, B POSTN, C TGFBR1, D DUSP1, E BID, and F FGFR2 in PTC patient tissues. ns p > 0.05; 
*p < 0.05
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node metastasis (p = 0.001), extrathyroidal extension (p < 0.001) and TNM stage 
(p < 0.001). There were no significant differences in sex (p = 0.262). POSTN expres-
sion was associated with tumor size (p = 0.012), lymph node metastasis (p < 0.001), 
and TNM stage (p = 0.019). However, age (p = 0.781), sex (p = 0.185) and 

Fig. 8   Expression of BID and POSTN in PTC cells. The expression of BID (A) and POSTN (B) in PTC 
and normal tissues determined by IHC (scale bar = 500 µm; zoom in section = 50 µm). C, D Western blot 
images and analyses of BID and POSTN expression
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extrathyroidal extension (p = 0.18) were not related to POSTN expression. In addi-
tion, the expression of POSTN and BID was further verified in PTC cells (Fig. 8B, 
C).

Discussion

THCA is the most common endocrine malignancy and includes papillary thyroid 
cancer (PTC), follicular thyroid cancer (FTC), poorly differentiated thyroid carci-
noma (PDTC), and anaplastic thyroid carcinoma (ATC). Despite improvements in 
molecular biology techniques, bioinformatics techniques, and a better understanding 
of THCA, effective treatment of advanced disease remains challenging. Exosomes 
are actively released by different cell types, thereby conditioning tumor microenvi-
ronment; furthermore, exosomes are involved in major functions of tumorigenesis 
(Feng et al. 2017; Wen et al. 2021). In addition, exosomes are key signals that medi-
ating cell-to-cell communication (Zhang et al. 2016). Accumulating evidence sug-
gests that exosomes could be diagnostic biomarkers, prognostic factors, and thera-
peutic options for cancer (Ludwig et  al. 2017; Peak et  al. 2020; Yue et  al. 2020). 
Bioinformatics studies of exosomes have highlighted the key involvement of the 
prognostic risk assessment model of exosome-related genes in patients with liver 

Table 2   Clinical features and BID/POSTN expression in 135 PTC patients

LNM, lymph node metastasis; ETE, extrathyroidal extension

Characteristics BID p value POSTN p value

Low, expres-
sion, no. cases

High, expres-
sion, no. cases

Low, expres-
sion, no. cases

High, expres-
sion, no. cases

Age (years)
 ≥ 55 37 34 < 0.001 47 24 0.781
 < 55 65 10 48 27

Gender
 Male 30 9 0.262 22 17 0.185
 Female 72 35 73 34

Tumor size
 ≥ 2 35 33 < 0.001 37 31 0.012
 < 2 67 11 58 20

LNM
 Yes 41 31 0.001 26 46 < 0.001
 No 61 13 69 5

ETE
 Yes 4 12 < 0.001 8 8 0.18
 No 98 32 87 43

TNM stage
 I–II 95 11 < 0.001 75 31 0.019
 III–IV 7 33 20 20
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cancer and lung cancer (Li et al. 2021a, b; Zuo et al. 2022). Further analysis revealed 
that exosome-related genes were associated with the immune microenvironment and 
prognosis in triple-negative breast cancer, colon adenocarcinoma and gastric cancer 
(Cui et al. 2022; Lin et al. 2022; Qiu et al. 2021). However, there are few reports on 
the bioinformatics analysis of exosomes in THCA.

To our knowledge, the present study was the first to establish an exosome risk 
analysis model based on exosome-related DEGs in THCA patients. The pertinent 
findings of this study are as follows. First, we obtained 6 exosome-related DEGs 
(BIRC5, POSTN, TGFBR1, DUSP1, BID, and FGFR2), and the functions and 
mechanisms of the 6 exosome-related DEGs were analyzed via GO and KEGG 
enrichment analyses. The protein‒protein interaction (PPI), mRNA‒miRNA, and 
mRNA-TF interaction networks were constructed. In addition, the GEO database 
was used to verify the differential expression of exosome-related DEGs. Moreover, 
we analyzed the correlation between immune infiltration cell levels and drug sen-
sitivity and the 6 exosome-related DEGs. In addition, our experiments confirmed 
that the mRNA expression of BID and POSTN was greater in tumor tissue than in 
normal tissue, whereas the expression levels of DUSP1 and FGFR2 were lower. 
No statistically significant difference in the expression of TGFBR1 or BIRC5 was 
observed between these tissues. We further validated the protein expression of BID 
and POSTN in PTC patients and cell lines.

In our study, 6 exosome-related DEGs were obtained; four (BIRC5, POSTN, 
TGFBR1, and BID) were upregulated, and two (DUSP1 and FGFR2) were down-
regulated in THCA. BRIC5 could be used as a diagnostic and prognostic biomarker 
for tumors, including ovarian cancer and glioma (Xu et al. 2020; Zheng et al. 2022). 
POSTN is expressed at higher levels in PTC and is associated with invasion and 
lymph node metastasis (Bai et al. 2009). TGFBR1 is a potent growth inhibitor that 
can regulate cell growth, and mutations in TGFBR1 are associated with malignant 
progression and metastasis of tumors (Lin et al. 2017). BID is a proapoptotic Bcl-2 
family member that is responsible for apoptotic signaling (Wang et  al. 1996) and 
contributes to multiple cell death paradigms, including oxidative cell death, ferrop-
tosis and mitochondrial damage (Li et al. 2021a, b; Neitemeier et al. 2017; Wang 
et al. 2021). DUSP1 functions as a tumor suppressor in different tumors (Martinez-
Martinez et  al. 2021; Zhang et  al. 2014), and FGFR2 is a transmembrane tyros-
ine kinase that mediates the FGF signaling implicated in tumorigenesis (Lei et al. 
2021; Turner and Grose 2010). These findings are consistent with the results of our 
study showing that exosome-related DEGs play significant roles in THCA. Fur-
thermore, the expression status of the 6 genes in our PTC tissues was evaluated by 
RT‒PCR, and the results showed high expression of BID and POSTN. Consistent 
with our results, POSTN mRNA levels were greater in PTC tissues than in normal 
tissues and were strongly correlated with tumor metastasis (Bai et  al. 2009). BID 
was upregulated in previous bioinformatics studies (Arora et al. 2021; Wang et al. 
2022), and to our knowledge, we found that BID mRNA was overexpressed in PTC 
cells for the first time. Concurrently, we confirmed that DUSP1 and FGFR2 were 
downregulated in our PTC tissues compared to their expression in adjacent thyroid 
tissues, but neither BIRC5 nor TGFBR1 showed statistically significant changes in 
expression levels.
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To gain insight into the biological functions of the exosome-related DEGs, we 
applied GO/KEGG analyses and revealed that the targets were related to several 
important signaling pathways, hepatitis B, multiple apoptosis pathways, and the 
MAPK signaling pathway axis, which are significant cellular signaling pathways 
in PTC. Importantly, thyroid gland dysfunction has been reported to occur with 
variant viral infection, and hepatitis B surface antigen (HBsAg) is a risk factor 
for PTC (Jiang et al. 2022; Zhong et al. 2020). Current and HBsAg-positive PTC 
patients were more likely to have central lymph node metastasis and bilateral 
tumors than were HBsAg-negative patients (Zhong et al. 2020).

Furthermore, we employed the 6 genes to construct a PPI network. To extend 
the interaction, we also incorporated mRNA‒miRNA and mRNA-TF interaction 
networks. In addition, the exosome-related DEGs in THCA and normal tissue 
samples were compared through TCGA-THCA, GSE3467, and GSE3678. These 
results support our previous findings that BIRC5, POSTN, TGFBR1, and BID 
were highly expressed; however, DUSP1 and FGFR2 were expressed at low levels 
in THCA samples.

THCAs, especially low-risk differentiated thyroid cancer (DTC) tumors, are 
promising for surgery, thyroid hormone suppression, and radioactive iodine 
(RAI) therapy; however, the adverse effects of these treatments could be greater 
than those of the disease itself (Cabanillas et  al. 2019). Hence, understanding 
the mechanisms of immunotherapy and drug sensitivity in THCA patients is 
highly important (Mandal et al. 2016; Tian et al. 2023a). We performed ssGSEA 
to quantify the relative abundance of infiltrating immune cells in the TCGA-
THCA dataset. Our results demonstrated a close relationship between infiltrat-
ing immune cells (central memory CD4 T cells, immature B cells, natural killer 
cells, regulatory T cells, and T follicular helper cells) and exosome-related DEGs. 
Screening drugs based on gene expression profiles has been widely applied in 
modern medicine (Tian et al. 2023b). For drug sensitivity, we profiled the corre-
lation between small molecule drugs and the 6 genes that interacted with the drug 
molecules to varying degrees. The results showed that DUSP1 interacted with 
most of the drug molecules in the three databases; however, no drugs were found 
to interact with TGFBR1 or BID in the GDSC database.

PTC, also known as differentiated thyroid carcinoma, is the most common type 
THCA in clinical practice, accounting for 70–80% of all thyroid cancer cases, 
and its incidence rate has gradually increased in recent years. We further focused 
on novel biomarkers (BID and POSTN) and evaluated protein expression in PTC 
tissues by IHC. We observed that the protein expression of BID was upregulated 
in PTC and associated with age, tumor size, lymph node metastasis, extrathyroi-
dal extension, and TNM stage; moreover, our TAM and clinical tissue samples 
showed that the expression of POSTN was associated with tumor size, lymph 
node metastasis and TNM stage in patients with PTC. Additionally, the protein 
expression of these two genes was confirmed in PTC cells.

This study has several limitations. The specific role of exosome-related DEGs, 
especially BID and POSTN, in PTC should be further studied in vitro and in vivo. 
In addition, the mechanisms of exosome-related DEGs in THCA progression 
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should be explored in further studies, as these findings may lead to new strategies 
for THCA treatment.

Conclusions

In conclusion, the exosome-related DEGs were found to be closely related to 
immune infiltration, drug sensitivity and prognosis in THCA patients. In addition, 
we experimentally confirmed the expression of novel exosome-related genes in PTC 
tissues and the relationship between BID/POSTN expression variation and clinico-
pathologic features in PTC. Our findings may lead to the identification of potential 
biomarkers and immune candidates for THCA therapeutic strategies.
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