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A B S T R A C T

Introduction: This study aimed to create a survival prediction model for breast cancer(BC) using perioperative 
anesthesia - related drug target genes(PARDTGs). It explored their immune microenvironment and drug sensi
tivity for personalized therapy.
Methods: Transcriptomic sequencing data of BC were downloaded from The Cancer Genome Atlas (TCGA) 
database. Common PARDTGs were retrieved from the DrugBank and ChemBL databases. Transcriptomic data 
were analyzed to identify differentially expressed PARDTGs (DE-PARDTGs) using rigorous statistical thresholds. 
A total of 101 machine learning algorithms were applied to construct PARDTG-based survival prediction models. 
Patients were stratified into high- and low-risk groups based on model-derived risk scores. Model performance 
was validated using an independent dataset from the Gene Expression Omnibus (GEO). Clinical-pathological 
correlations, immune profiling, and mutational landscapes were compared between risk groups in the TCGA- 
BRCA cohort. Drug sensitivity to commonly used therapies was predicted via transcriptomic correlations.
Results: We identified five DE - PARDTGs (PTGS2, TACR1, ADRB1, ABCB1, ACKR3) for a BC prognostic model. 
Receiver Operating Characteristic - Area Under the Curves（ROC - AUCs) for 1 -, 3 -, 5 - year overall survival(OS) 
were 0.722, 0.730, 0.691. TACR1 and ADRB1 high - expression meant better prognosis. Risk groups differed in 
immunity, with TACR1 correlating with immune checkpoints and drug sensitivity. Conclusions: The PARDTG - 
based model predicts BC survival independently. TACR1, key to immune response and drug sensitivity, could be 
a new therapeutic target. These results stress the importance of focusing on perioperative anesthesia - related 
drug targets in BC research.

1. Introduction

Breast cancer(BC) is one of the most prevalent malignancies among 
women worldwide, with persistently high incidence and mortality rates. 

According to the latest statistics, the number of newly diagnosed breast 
cancer cases globally has exceeded that of lung cancer, making it the 
most common cancer (Bashar and Begam, 2022). Meanwhile, breast 
cancer is also a leading cause of cancer-related deaths among women, 
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accounting for 15 % of all cancer-related fatalities (Global Burden of 
Disease Cancer et al., 2019). Treatment modalities for breast cancer 
include surgery, radiotherapy, chemotherapy, endocrine therapy, and 
immunotherapy. The vast majority of patients undergo surgical pro
cedures. In recent years, an increasing number of studies have demon
strated that perioperative events influence the risk of cancer recurrence, 
and the use of drugs such as β-agonists and intravenous anesthetics 
during the perioperative period is associated with patient prognosis 
(Hiller et al., 2017). Therefore, perioperative anesthesia management is 
not only crucial for patients’ short-term recovery but also merits 
attention for its potential impact on long-term prognosis. In recent years, 
research has revealed that perioperative anesthesia-related drugs may 
not only affect the physiological state of patients during the periopera
tive period, thereby influencing the biological behavior of cancer cells 
(Wall et al., 2019), but may also act on specific target pathways or 
regulate the expression of certain genes, affecting the biological 
behavior of breast cancer and potentially impacting patient prognosis 
(Inada et al., 2011; Kwakye et al., 2020; Yang et al., 2017). This makes 
the potential role of anesthesia in breast cancer treatment an important 
yet understudied area.

Previous studies have shown that perioperative anesthesia-related 
drugs such as sevoflurane (Deng et al., 2020; Kim et al., 2023), propo
fol (Wang et al., 2020b), and midazolam (Lu et al., 2021) may influence 
cancer progression by affecting the proliferation, apoptosis, invasion, 
and drug resistance of cancer cells, regulating the tumor microenvi
ronment, or modulating the immune system (Kadantseva et al., 2024). 
However, there is a paucity of research on the expression changes and 
clinical significance of perioperative anesthesia-related drug target 
genes (PARDTGs) in breast cancer, especially their specific roles in 
breast cancer progression and prognosis. Additionally, perioperative 
anesthesia typically involves the combined use of multiple drugs, and 
studies on individual anesthetics may not fully elucidate the compre
hensive impact of anesthesia on breast cancer patients. In contrast, the 
target genes of commonly used perioperative anesthesia-related drugs 
may play a more extensive and sustained role in the occurrence and 
development of breast cancer. Therefore, exploring these genes can 
provide deeper insights into the potential impact of anesthesia on breast 
cancer.

In this study, we utilized PARDTGs in combination with breast 
cancer transcriptomic and genomic data to screen for differentially 
expressed genes and construct a risk model for predicting patient 
prognosis. We analyzed the expression of these genes and their associ
ations with clinical outcomes, aiming to explore their roles in the 
development, personalized treatment, and prognosis prediction of 
breast cancer. This research not only offers a new perspective for pre
cision medicine in breast cancer but also provides evidence for the po
tential impact of anesthesia on breast cancer treatment. The analysis 
flowchart is shown in Fig. 1.

2. Methods

2.1. Clinical samples and data collection

Transcriptome sequencing data of breast cancer patients from The 
Cancer Genome Atlas database (TCGA,https://www.cancer.gov/ccg/re 
search/genome-sequencing/tcga) were downloaded using the TCGA
biolinks package in R software (Version 4.3.2). Perioperative anesthesia- 
related drug target genes (PARDTGs) were identified from the DrugBank 
database (https://go.drugbank.com/) and Chembl database 
(https://www.ebi.ac.uk/chembl/). External validation datasets 
GSE1456 and GSE45827 were downloaded from the Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) using the GEO
query package.

2.2. Identification of differentially expressed PARDTGs

Transcriptome sequencing data were processed and normalized. 
Differential expression analysis was performed using the DESeq2 pack
age in R to screen for significantly differentially expressed genes (DEGs) 
with a threshold of |log₂ fold change (FC)| > 1 and p < 0.05. An inter
section was taken between PARDTGs and all DEGs to extract differen
tially expressed PARDTGs. The pheatmap package was used to generate 
volcano plots, heatmaps, and Venn diagrams to visualize the expression 
patterns and screening results of differentially expressed genes.

2.3. GO and KEGG enrichment analysis

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and 
Genomes) enrichment analyses were conducted using the clusterProfiler 
package in R, with a significance threshold of p < 0.05. The top 20 
enriched terms were selected and visualized via circle plots, chord dia
grams, and correlation plots to present the results.

2.4. Screening of key genes and construction of prognostic model

Survival information of breast cancer patients was downloaded from 
the UCSC Xena official website (https://xena.ucsc.edu/). Survival data 
were integrated with the expression levels of 48 commonly used peri
operative anesthesia-related drug target genes (PARDTGs) identified in 
this study. The "Mime1" package in R was used to construct prognostic 
models using 101 machine learning methods, with the following specific 
steps:1.Key gene screening: Five key genes significantly associated with 
survival were selected from 48 PARDTGs via univariate Cox propor
tional hazards regression analysis.2.Model construction: Prognostic 
models were developed using the 101 machine learning methods based 
on the five key genes, and risk scores were generated.3.Model evalua
tion: The grouping ability of the risk model was assessed via Kaplan- 
Meier (K-M) survival curves and log-rank tests.4.External validation: 
The GEO cohort was used as an independent validation set to further 
verify the model’s reliability.5.Model performance assessment: Time- 
dependent receiver operating characteristic (ROC) curves for one-year, 
three-year and five-year survival were plotted using the "survival" and 
"timeROC" packages in R, and the area under the curve (AUC) was 
calculated to evaluate the model’s predictive performance.

2.5. Screening of core genes and external validation

The R package "Mime1" was used for further screening of core genes. 
Box plots of core gene expression levels between normal and tumor 
groups were plotted, and the expression of core genes was validated 
using GEO datasets (https://www.ncbi.nlm.nih.gov/geo/). Protein 
expression levels of core genes were verified on the UALCAN(The Uni
versity of ALabama at Birmingham CANcer) website (https://ualcan.pat 
h.uab.edu/analysis.html).

2.6. Construction of nomogram

Clinical information was downloaded from the UCSC Xena official 
website (https://xena.ucsc.edu/). Univariate and multivariate Cox 
regression analyses were performed on clinical information and risk 
scores using the "survival" package to evaluate the independent pre
dictive ability of risk scores. Nomograms were constructed using the 
"rms" package in R by integrating significant factors from multivariate 
Cox regression analysis to predict the one-year, three-year, and five-year 
overall survival of breast cancer patients.

2.7. Clinical correlation analysis

Clinical data of breast cancer (BC) patients were integrated to 
analyze differences in risk scores across different clinical characteristic 
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Fig. 1.
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groups. Chi-square tests were used to compare the distribution of clinical 
characteristics between high-risk and low-risk groups. Raincloud plots 
and heatmaps were generated using the ComplexHeatmap package in R, 
while stacked plots were created with the "ggplot2" and "RColorBrewer" 
packages.

2.8. Immune-related analysis

Immune cell infiltration analysis was performed using the Xcell and 
Cibersort algorithms via the "IBOR" package in R, with the following 
steps:

1) Data normalization: Results of immune infiltration analysis were 
normalized.

2) Difference comparison: Immune infiltration differences were 
compared between normal and tumor tissues, high-risk vs. low-risk 
groups, and high vs. low expression groups of TACR1 and ADRB1 genes.

3) Visualization Box plots were plotted using ggplot2. Mantel tests 
were conducted on TACR1, ADRB1, risk scores, and immune checkpoint 
genes using the "vegan" package, followed by butterfly plot visualiza
tion. Wilcoxon rank-sum tests were used to compare immune checkpoint 
gene expression between high-and low-risk groups, with lollipop plots 
generated via "ggplot2".

2.9. Genomic mutation profiling analysis

Mutation annotation format (MAF) data of breast cancer patients 
were downloaded from the TCGA database using the "TCGAbiolinks" 
package in R. Genomic mutation characteristics were analyzed with the 
"maftools" package, and waterfall plots were plotted. Tumor mutational 
burden (TMB) and mutational allele tumor heterogeneity (MATH) were 
calculated for survival analysis. Violin plots and survival curves were 
generated using "ggviolin"and" ggsurvplot", respectively.

2.10. Drug sensitivity analysis

Drug sensitivity analysis was performed using the "oncoPredict" 
package in R. Drug response data were obtained from the GDSC(Geno
mics of Drug Sensitivity in Cancer) database and analyzed in conjunc
tion with breast cancer gene expression data, with normalization of the 
gene expression matrix. The IC50 values (half maximal inhibitory con
centration) of samples to different drugs were calculated using built-in 
functions of "oncoPredict". The ggpubr package and Wilcoxon rank- 
sum test were used to further compare drug response differences be
tween high-risk and low-risk groups, and box plots were generated. 
Correlation analysis between core genes (TACR1 and ADRB1) and 
commonly used clinical drugs was performed and visualized using the 
"ggplot2" package.

2.11. Statistical Analysis

All statistical analyses were conducted using R software (version 
4.3.2 and version4.4.2). P < 0.05 was considered statistically 
significant.

3. Result

3.1. Identification of differentially expressed perioperative anesthesia- 
related target genes

We downloaded transcriptomic data from 1118 breast cancer sam
ples and 113 normal samples in the TCGA database. To investigate 
global gene expression differences between normal and tumor samples, 
differential expression analysis was performed, identifying a total of 
5014 differentially expressed genes (DEGs), including 3161 upregulated 
and 1943 downregulated genes (|log₂FC|= > 1 and p < 0.05). Principal 
component analysis (PCA) of all DEGs was conducted to visualize 

sample clustering, revealing a clear separation between tumor and 
normal samples (Fig. 2A). A volcano plot was generated to display DEGs 
(Fig. 2B).

A total of 120 perioperative anesthesia-related drug target genes 
(PARDTGs) were identified from the Drugbank (https://go.drugbank. 
com/) and Pubchem (https://pubchem.ncbi.nlm.nih.gov/) databases 
based on the types of drugs commonly used in the perioperative period 
(including sedative-hypnotics, analgesics, etc.) and in combination with 
clinical guidelines（Supplementary Table 4,5）. An intersection anal
ysis between these 120 PARDTGs and the 5014 DEGs yielded 48 
differentially expressed PARDTGs (DE-PARDTGs) (Fig. 2C, Supplemen
tary Table 3). A heatmap was created to visualize the expression patterns 
of these 48 genes (Fig. 2D).

Further principal component analysis (PCA) was performed using the 
48 DE-PARDTGs, and the results (Fig. 2E) showed a significant separa
tion between tumor and normal samples, indicating substantial differ
ences in the expression of these genes between the two groups.

3.2. GO and KEGG analysis

GO and KEGG enrichment analyses were performed on the 48 DE- 
PARDTGs. GO analysis revealed enrichment of these genes in biolog
ical processes (BP), cellular components (CC), and molecular functions 
(MF) (Fig. 3A). Specifically, they were predominantly enriched in bio
logical processes such as synaptic transmission, monoamine neuro
transmitter transport, membrane potential regulation, and ion 
transmembrane transport. Significant enrichment was also observed in 
molecular functions including receptor activity, G protein-coupled re
ceptor signaling, and ion channel regulation.

KEGG pathway enrichment analysis showed that these genes were 
significantly enriched in a series of pathways, including the cAMP 
signaling pathway, calcium signaling pathway, neuroactive ligand- 
receptor interaction, nicotine addiction pathway, and angiogenesis- 
related pathways (Fig. 3B).

3.3. Construction of prognostic model

We employed 101 machine learning methods to develop a prognostic 
model using the48 DE-PARDTGs in breast cancer. During model con
struction, univariate regression analysis was first performed to screen 
five key genes: PTGS2, TACR1, ADRB1, ABCB1, and ACKR3. The prog
nostic model constructed by the StepCox[both]+GBM method demon
strated optimal performance in both the training and validation sets 
(Fig. 4A).

Patients in the TCGA-BRCA cohort were stratified into high- and low- 
risk groups based on the median risk score of this model. Scatter plots of 
overall survival information showed a significantly higher number of 
deaths in the high-risk group (Fig. 4B, C). Heatmaps depicting the 
expression profiles of the five key genes revealed distinct patterns be
tween the two risk groups (Fig. 4D). Kaplan-Meier survival analysis 
indicated a significant difference in overall survival between high- and 
low-risk groups (p < 0.0001).

Time-dependent receiver operating characteristic (ROC) curves were 
generated to evaluate model performance, yielding area under the curve 
(AUC) values of 0.722, 0.730, and0.691 for one-, three-, and five-year 
survival, respectively, in the TCGA-BRCA cohort (Fig. 4H, I).

External validation in the GSE1456 cohort confirmed consistent re
sults: patients stratified by the same risk model showed higher mortality 
in the high-risk group (Fig. 4E, F), distinct expression patterns of key 
genes (Fig. 4G), and significant survival differences (p < 0.0001). The 
AUC values for one-, three-, and five-year survival in the validation 
cohort were 0.761, 0.641, and 0.663, respectively (Fig. 4J, K).

These results demonstrate the robust performance and clinical 
applicability of our risk model in predicting breast cancer prognosis 
across independent cohorts.
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3.4. Screening of core genes

Using 18 bioinformatics tools to screen for core genes, 17 of these 
methods consistently identified TACR1 and ADRB1 (Fig. 5A). Expression 
validation of TACR1 and ADRB1 was performed in the GSE45827 
cohort. Results showed that both genes were lowly expressed in tumor 
tissues and highly expressed in normal tissues, consistent with findings 
from the TCGA cohort. Heatmaps of core gene expression indicated that 
TACR1 and ADRB1 were both under-expressed in the high-risk group, 
suggesting that their high expression may be associated with lower 
tumor incidence and better prognosis (Fig. 4D, G; Fig. 5B, C, F, G). 
Additionally, protein expression levels of core genes were verified using 
the UALCAN website. Results showed that TACR1 (also known as SPR) 
was significantly downregulated in tumor tissues (Fig. 5D).Patients were 
stratified into high- and low-expression groups based on the median 
expression levels of TACR1 and ADRB1. Survival analysis revealed that 
patients in the high-expression groups exhibited significantly longer 
survival than those in the low-expression groups (Fig. 5E, H). These 
findings indicate that high expression of TACR1 and ADRB1 is associ
ated with favorable prognosis.

3.5. Nomogram and clinical correlation analysis

Next, we validated the prognostic value of the risk score through 
univariate (Fig. 6A) and multivariate (Fig. 6B) Cox regression analyses 
incorporating clinical information. Results demonstrated that the risk 
score was statistically significant and could serve as an independent 
prognostic factor. To enhance the efficiency and accuracy of predicting 
overall survival in breast cancer patients, we developed a clinically 
applicable nomogram. This nomogram integrates age, gender, tumor 
stage, and risk score to comprehensively estimate the one-, three-, and 
five-year survival probabilities of patients (Fig. 6C). Calibration curves 

were plotted to compare predicted probabilities with actual outcomes, 
confirming the good predictive performance of the nomogram (Fig. 6D). 
Using patient survival data, we generated a heatmap integrating risk 
groups and clinical information to visualize the distribution of survival 
time, clinical characteristics, and risk stratification. Results showed that 
patients in the high-risk group had significantly shorter survival times, 
higher mortality rates, older ages, and a higher proportion of male pa
tients (Supplementary Figure 2). We further investigated whether risk 
scores differed across age, gender, and tumor stage subgroups, revealing 
significant associations with age and gender. These findings suggest that 
certain clinical factors may influence patient prognosis. Additionally, 
analysis of MKI67 (encoding Ki67) expression in different risk groups 
showed significantly higher expression in the high-risk group, which 
may contribute to the poorer prognosis of this subgroup (Fig. 6E). Chi- 
square test results for clinical characteristic distribution between high- 
and low-risk groups indicated significant differences in multiple pa
rameters (Fig. 6F). Survival analysis across clinical subgroups (stratified 
by age, T stage, N stage, M stage, and overall tumor stage) demonstrated 
that the risk score could significantly distinguish patient outcomes in all 
subgroups (P < 0.05), highlighting its broad applicability and robust
ness across diverse populations (Supplementary Figure 1).

3.6. Immune infiltration analysis

To analyze the composition and function of immune cells across 
different groups, we performed immune infiltration analysis on normal 
and tumor tissues using the XCell algorithm. Results showed that eo
sinophils, MEP (myeloid erythroid progenitors), mesangial cells, MSCs 
(mesenchymal stem cells), NKT cells(Natural Killer T cell), osteoblasts, 
and plasma cells were more abundant in tumor tissues compared to 
normal tissues. Tumor tissues also exhibited higher ImmuneScore, while 
normal tissues had significantly higher HSC (hematopoietic stem cell) 

Fig. 2. PCA and differential expression analysis (A) PCA analysis of differentially expressed genes (DEGs). (B) Volcano plot of DEGs. (C) Venn diagram showing the 
intersection between DEGs in TCGA-BRCA and PARDTGs. (D) Heatmap of differentially expressed PARDTGs. (E) PCA analysis of differentially expressed PARDTGs.
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infiltration (Fig. 7A). In immune infiltration analysis of high- and low- 
risk groups in tumor tissues, MEP, NKT cells, smooth muscle cells, as
trocytes, MSCs, and mesangial cells were more abundant in the high-risk 
group. Conversely, CD4 + Tem (effector memory T cells), CD4 + Tcm 
(central memory T cells), mast cells, HSCs, class-switched memory B 

cells, and basophils were more enriched in the low-risk group (Fig. 7B). 
Cibersort algorithm analysis of tumor immune microenvironment 
composition between risk groups revealed higher M1 macrophage 
infiltration in the low-risk group and higher M2 macrophage infiltration 
in the high-risk group. Stratifying patients into high- and low-expression 

Fig. 3. GO and KEGG enrichment analysis (A) GO enrichment analysis – Circle plots, gene-pathway correlation plots, and pathway-network association diagrams for 
the top 10 BP (biological processes), CC (cellular components), and MF (molecular functions). (B) KEGG enrichment analysis – Circle plots, gene-pathway correlation 
plots, and pathway-network association diagrams.
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groups based on the median expression levels of TACR1 and ADRB1, we 
observed similar trends in immune cell composition between the two 
groups. Specifically, CD4 + Tem, HSCs, and class-switched memory B 
cells were more abundant in the high-expression groups (Fig. 7C, D), 
which also showed better prognosis (Fig. 5F, I). This suggests that these 
immune cells may be associated with favorable outcomes.

3.7. Immune checkpoint analysis

Correlation analysis was performed among core genes TACR1, 
ADRB1, risk scores, and immune checkpoint genes (Fig. 8A). Results 
showed significant correlations between TACR1 and common immune 
checkpoint genes such as BTLA, CTLA-4, and PDCD1, indicating that 
TACR1 may interact with immune checkpoint genes to influence tumor 
development and progression, thereby affecting prognosis. Expression of 
immune checkpoint genes was compared between high- and low-risk 

Fig. 4. Construction of the prognostic model (A) Model development using 101 machine learning methods. (B) Distribution of risk scores in the TCGA-BRCA cohort 
based on the PARDTG-derived model. (C) Survival status of high- and low-risk groups in the TCGA-BRCA cohort based on the DE-PARDTG model. (D) Expression 
profiles of model-constructed genes in high- and low-risk groups of the TCGA-BRCA cohort. (E) Distribution of risk scores in the GEO cohort based on the PARDTG- 
derived model. (F) Survival status of high- and low-risk groups in the GEO cohort based on the PARDTG-derived model. (G) Expression profiles of model-constructed 
genes in high- and low-risk groups of the GEO cohort. (H) Kaplan-Meier survival curves for overall survival (OS) in high- and low-risk groups of the TCGA-BRCA 
cohort based on the PARDTG-derived model. (I) Time-dependent receiver operating characteristic (ROC) curves for predicting overall survival in the TCGA-BRCA 
cohort using the PARDTG-derived model. (J) Kaplan-Meier survival curves for OS in high- and low-risk groups of the GEO cohort based on the PARDTG-derived 
model. (K) Time-dependent ROC curves for predicting overall survival in the GEO cohort using the PARDTG-derived model.
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groups. Multiple common checkpoint genes including BTLA, CTLA-4, 
and PDCD1 were significantly upregulated in the low-risk group 
(P < 0.0001). This may be associated with the better prognosis of the 
low-risk group, suggesting that patients in the low-risk group are more 
likely to benefit from immunotherapy (Fig. 8B).

3.8. Genomic mutation profiling analysis

Genomic variability analysis was performed on MAF(Mutation 
Annotation Format) data of TCGA-BRCA. First, mutation profiles were 

compared between high- and low-risk groups, revealing distinct muta
tional patterns. In the high-risk group, 450 out of 516 samples (87.21 %) 
had mutations, with the top three mutated genes being TP53, PIK3CA, 
and TTN, primarily involving frameshift deletions and missense muta
tions. In the low-risk group, 417 out of 474 samples had mutations, with 
the top three genes being PIK3CA, TP53, and CDH1, mainly character
ized by missense and nonsense mutations (Fig. 9A). Subsequently, genes 
with significantly different mutation frequencies between risk groups 
were analyzed (Fig. 9B). PTPRD and BRCA2 exhibited higher mutation 
rates in the high-risk group (OR<1, p < 0.01), while CDH1 was more 

Fig. 5. Screening and external validation of core genes (A) Screening of core genes using machine learning methods. (B) Expression of TACR1 in normal and tumor 
tissues of the TCGA-BRCA cohort.(C) Expression of TACR1 in normal and tumor tissues of the GEO cohort.(D) Protein expression of TACR1 (SPR) in normal and 
tumor tissues analyzed via UALCAN.(E) Kaplan-Meier survival curves for high- vs. low-expression groups of TACR1 in the TCGA-BRCA cohort.(F) Expression of 
ADRB1 in normal and tumor tissues of the TCGA-BRCA cohort.(G) Expression of ADRB1 in normal and tumor tissues of the GEO cohort.(H) Kaplan-Meier survival 
curves for high- vs. low-expression groups of ADRB1 in the TCGA-BRCA cohort.

D. Yu et al.                                                                                                                                                                                                                                       Computational Biology and Chemistry 120 (2026) 108681 

8 



frequently mutated in the low-risk group. This suggests that CDH1 may 
be closely associated with favorable prognosis. Analysis of tumor 
mutational burden (TMB) revealed significant differences between risk 
groups, with the high-risk group showing higher TMB (Fig. 9C). Strati
fying patients by the optimal TMB cutoff value, the low-TMB group 
demonstrated better survival outcomes (Fig. 9D). Similarly, mutational 

allele tumor heterogeneity (MATH) was significantly higher in the high- 
risk group (Fig. 9C). Patients with high MATH had poorer prognosis 
compared to low-MATH counterparts (Fig. 9D).

Fig. 6. Construction of the nomogram (A) Univariate regression analysis. (B) Multivariate regression analysis. (C) Nomogram integrating risk scores based on five 
PARDTGs and clinical characteristics. (D) Calibration plot of actual risk probabilities. (E) Raincloud plots of risk scores across clinical subgroups and MKI67 gene 
expression between high/low-risk groups. (F) Bar charts showing the distribution of clinical characteristics between high-and low-risk groups.
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3.9. Drug sensitivity analysis

Drug sensitivity prediction analysis was performed on patients in the 
TCGA-BRCA cohort. Fifteen commonly used drugs for breast cancer 
treatment with significant therapeutic effects were selected, and their 
sensitivity was compared between high- and low-risk groups. Results 
showed significant differences in drug sensitivity between the two 
groups. The low-risk group generally exhibited lower IC50 values, 
indicating higher sensitivity to these therapeutic drugs (Fig. 10A). In the 
TCGA-BRCA cohort, patients were stratified into high- and low- 
expression groups based on the median expression levels of core genes 
TACR1 and ADRB1 for drug sensitivity analysis. Notably, TACR1 low- 
expression groups showed significantly higher sensitivity to Alpelisib 
and Fulvestrant, while TACR1 high-expression groups were more sen
sitive to the remaining 13 drugs. For ADRB1, high-expression groups 
demonstrated higher sensitivity to all drugs except Alpelisib, with sig
nificant differences observed in sensitivity to 14 drugs compared to low- 
expression groups (Fig. 10B). Correlation analysis between TACR1/ 
ADRB1 expression levels and responses to the 15 drugs revealed: TACR1 
expression was positively correlated with Alpelisib, Fulvestrant, and 
Ribociclib (higher expression → higher IC50 → lower sensitivity) and 
negatively correlated with all other drugs (higher expression → lower 
IC50 → higher sensitivity). ADRB1 expression was negatively correlated 
with all drugs except Alpelisib (higher expression → lower IC50 → 
higher sensitivity) (Fig. 10C).

4. Discussion

Breast cancer(BC) is one of the most common malignancies among 
women worldwide, with its incidence and mortality rates consistently 
ranking among the highest. Surgery is a common treatment for breast 
cancer, and the majority of patients require surgical intervention. 
Perioperative events can influence patient prognosis to some extent, 
making the impact of perioperative anesthesia-related medications 
worthy of attention. These medications may regulate the biological 
behavior of breast cancer through their target genes, thereby affecting 
patient outcomes. Despite the complex and diverse types of periopera
tive anesthetic drugs, most existing studies focus on the potential effects 
of specific anesthetics on breast cancer. Our study aimed to construct a 
risk prediction model by investigating the target genes of commonly 
used perioperative anesthesia-related drugs, thereby predicting breast 
cancer prognosis from a novel perspective and exploring the potential 
roles of these genes in tumorigenesis, development, and prognosis.

We identified 48 differentially expressed perioperative anesthesia- 
related drug target genes (DE-PARDTGs) in breast cancer, which were 
significantly enriched in pathways such as cAMP signaling, calcium 
signaling, neuroactive ligand-receptor interaction, nicotine addiction, 
and angiogenesis.Among them, cAMP can promote cancer cell growth, 
and can also inhibit cell proliferation and survival under specific con
ditions (H. Zhang et al., 2024). The cAMP/PKA/CREB pathway has been 
shown to act as a downstream signaling pathway of JAK/STAT3 to 
promote chemoresistance in inflammatory breast cancer, while 
PKA-mediated inhibition of ERK1/2 may enhance the sensitivity of 
triple-negative breast cancer cells to doxorubicin (Yu et al., 2017a). 

Fig. 7. Immune infiltration analysis (A) Differences in immune infiltration between normal and tumor tissues in the TCGA-BRCA cohort. (B) Differences in immune 
infiltration between high- and low-risk groups based on the PARDTG-derived model in the TCGA-BRCA cohort. (C) Differences in immune infiltration between high- 
and low-expression groups of TACR1 in the TCGA-BRCA cohort.(D) Differences in immune infiltration between high- and low-expression groups of ADRB1 in the 
TCGA-BRCA cohort. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Studies have shown that calcium signaling can regulate many 
immune-related processes in cancer, modulate immune checkpoints, 
reshape the tumor microenvironment, and is associated with reverse 
multidrug resistance and inhibition of immune escape (L. Wu et al., 
2021).In the nicotine addiction pathway, nicotine promotes dopamine 
(DA) release by activating nicotinic acetylcholine receptors (nAChRs) in 

the central nervous system. Studies have shown that this process can 
activate downstream pathways such as JAK2/STAT3 and PI3K/Akt, 
thereby promoting the proliferation, migration, and anti-apoptotic 
ability of breast cancer cells (Guha et al., 2014). Additionally, nicotine 
increases the proportion of breast cancer stem-like cells, enhancing 
tumor drug resistance and metastatic potential.Angiogenesis is a critical 

Fig. 8. Immune checkpoint analysis (A) Correlations among core genes TACR1, ADRB1, risk scores, and immune checkpoint genes in the TCGA-BRCA cohort. (B) 
Expression of immune checkpoint genes in high- and low-risk groups based on the PARDTG-derived model in the TCGA-BRCA cohort. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001.
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process for the growth and spread of solid tumors (Ayoub et al., 2022). 
These pathways highlight the key roles of our studied PARDTGs in the 
development and prognosis of breast cancer.

Using univariate regression analysis, we identified five perioperative 
anesthesia-related drug target genes(PARDTGs) significantly associated 
with prognosis: PTGS2, TACR1, ADRB1, ABCB1, and ACKR3. A risk 
model was constructed using these five genes. Existing studies have 
highlighted the critical role of TACR1 in tumorigenesis and prognosis: In 
neuroblastoma, TACR1 has been identified as a potent anticancer target 
across various neuroblastoma subtypes (Pohl et al., 2017). In head and 
neck squamous cell carcinoma, TACR1 methylation serves as a novel 
biomarker (Misawa et al., 2013). Full-length neurokinin-1 (encoded by 
TACR1) expression is negatively correlated with tumor lymph node 
metastasis (TNM stage) and lymph node metastasis, indicating its role in 
breast cancer prognosis (Zhou et al., 2019). ADRB1 has been recognized 
as a prognostic biomarker in breast cancer (Li and Liu, 2021). ADRB1 
mutations are associated with lower tumor mutational burden (TMB), 
and patients with such mutations exhibit better clinical outcomes 
(Wang, 2020a). PTGS2 plays a key role in breast cancer biology: it has 
been identified as a gene influencing paclitaxel treatment response (J. 
Wu et al., 2021), and its activation and overexpression may promote 
breast cancer metastasis and drug resistance, thereby affecting prognosis 
(Festa-Vasconcellos et al., 2012). ABCB1 gene polymorphisms are 

associated with breast cancer susceptibility (Madrid-Paredes et al., 
2020), and ABCB1 is linked to paclitaxel and doxorubicin resistance in 
breast cancer cell lines (Fultang et al., 2020; Wang et al., 2023; D. Zhang 
et al., 2023), influencing prognosis. ACKR3 regulates breast cancer 
metastasis (Stacer et al., 2016), and its high expression is associated with 
poorer overall survival (OS) (Yang et al., 2023), consistent with our 
findings. These results validate the role of these genes in cancer and 
breast cancer development and prognosis, confirming the reliability of 
our screening results.

Analysis of immune infiltration between normal and tumor groups 
revealed higher ImmuneScore and more abundant immune cell infil
tration in tumor tissues, indicating immunological changes during 
breast cancer progression. Immune infiltration analysis of high- and low- 
risk groups showed similar compositions but distinct quantities of im
mune cells in the microenvironment. The high-risk group was enriched 
in MEP(myeloid progenitor cells),NKT(Nature Killer T cell), and MSCs 
(mesenchymal stem cells), while the low-risk group had higher pro
portions of CD4 + Tem(effector memory T cells), CD4 + Tcm(central 
memory T cells),mast cells, HSCs(hematopoietic stem cells),class- 
switched memory B cells, and basophils.

In the high-risk group, the enrichment of cells such as MEP, NKT, and 
MSC may be associated with the formation of a highly aggressive tumor 
and an immunosuppressive microenvironment. The enrichment of MEP 

Fig. 9. Genomic variation analysis (A) Distribution of the top 20 mutated genes in high- and low-risk groups of TCGA-BRCA. (B) Forest plot of the most significantly 
differentially mutated genes between high- and low-risk groups. (C) Analysis of TMB and MATH in high- and low-risk groups. (D) Kaplan-Meier survival curves for 
high- and low-TMB/MATH groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 10. Drug sensitivity analysis (A) Box plots showing differences in drug sensitivity between high- and low-risk groups based on the PARDTG-derived model in the 
TCGA-BRCA cohort. (B) Box plots showing differences in drug sensitivity between high-/low-expression groups of TACR1 and ADRB1 in the TCGA-BRCA cohort. (C) 
Correlation heatmap between TACR1, ADRB1, and commonly used clinical therapeutic drugs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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(myeloid progenitor cells) may indicate abnormal proliferation of 
myeloid cells, which can be altered in the tumor microenvironment to 
exert pro-inflammatory and immunosuppressive effects (Gabrilovich 
et al., 2012).NKT cells have dual roles in anti-tumor immunity, poten
tially exerting immunosuppressive effects when induced by the tumor 
microenvironment (Tyznik et al., 2014).MSCs (mesenchymal stem cells) 
are closely associated with immunosuppression. They inhibit CD8 + T 
cell function and promote Treg cell proliferation by secreting immuno
suppressive factors (e.g., PGE2, IDO), thereby fostering an immuno
suppressive microenvironment that facilitates tumor growth (Shi et al., 
2017).

In the low-risk group, cells may exhibit more active anti-tumor im
munity, with CD4 + Tem (effector memory CD4 + T cells) and 
CD4 + Tcm (central memory CD4 + T cells) playing crucial roles in 
tumor immunity.CD4 + Tcm cells provide long-term immune memory 
and rapidly differentiate into effector T cells upon antigen stimulation, 
while CD4 + Tem cells mediate rapid effector responses. This suggests 
stronger immune memory and adaptive immune responses in the low- 
risk group. CD4 + T cells can directly kill tumor cells or indirectly 
inhibit tumors by activating innate immune cells or reducing tumor 
angiogenesis (Kravtsov et al., 2022). Class-switched memory B cells 
were significantly increased in the low-risk group, indicating a protec
tive role of humoral immunity. These cells produce isotype-switched 
antibodies in the tumor microenvironment, which correlate with bet
ter prognosis in breast cancer patients, enhance responses to 
PD-1/PD-L1 immunotherapy, and promote anti-tumor immunity 
through antigen presentation and T cell activation (Conejo-Garcia et al., 
2023; Engelhard et al., 2021; Tsou et al., 2016). This aligns with our 
immune checkpoint analysis showing that low-risk patients may benefit 
more from PD-1/PD-L1 therapy. Mast cells have traditionally been 
recognized as participants in allergic reactions, but recently research 
indicates their roles in the tumor microenvironment are more complex. 
In some contexts, mast cells promote tumor progression, whereas in 
breast cancer, they exhibit protective effects (Varricchi et al., 2017). 
Previous studies have shown that basophils can infiltrate various human 
cancers and exert divergent roles in promoting or inhibiting tumori
genesis (Poto et al., 2022). Our study found a higher proportion of ba
sophils in the low-risk group of breast cancer, suggesting a potential 
protective role of basophils in breast cancer.

Cibersort immune analysis showed that the proportion of M1-type 
macrophages was higher in the low-risk group, while the proportion 
of M2-type macrophages was higher in the high-risk group. M1 macro
phages induce Th1-type immune responses, possess the ability to pro
mote inflammation and anti-tumor immune activity, and can also 
produce reactive oxygen and nitrogen species to phagocytose and kill 
tumor cells (Arnold et al., 2014; Pan et al., 2020). M2-type macrophages 
can secrete pro-angiogenic factors such as vascular endothelial growth 
factor (VEGF) to promote tumor angiogenesis; they can also facilitate 
tumor cell invasion and metastasis by degrading various collagens and 
other extracellular matrix components (Annamalai et al., 2018; Zhu 
et al., 2021). These differences likely contribute to the prognostic dis
parities between risk groups.

Genomic mutation profiling analysis revealed distinct mutational 
landscapes between high- and low-risk groups. The high-risk group 
exhibited the highest frequency of PTPRD mutations. PTPRD, which 
encodes protein tyrosine phosphatase receptor type D, regulates cellular 
signaling and plays critical roles in cell growth, differentiation, migra
tion, and adhesion (Yu et al., 2017b). Mutations in PTPRD can activate 
downstream JAK2/STAT3 signaling pathways, thereby promoting 
tumor growth (Veeriah et al., 2009), which may partially explain the 
poorer prognosis of the high-risk group. Differences in tumor mutational 
burden (TMB) and mutational allele tumor heterogeneity (MATH) were 
observed between groups, with the high-risk group showing higher TMB 
and MATH, both of which correlate with worse prognosis.

The results of the drug sensitivity analysis showed that the low - risk 
group exhibited lower IC50 values for commonly - used therapeutic 

drugs except Alpelisib, indicating higher sensitivity to these drugs. This 
suggests that low-risk patients may derive greater benefit from standard 
therapies compared to high-risk patients, who may require higher drug 
doses or combination strategies to achieve optimal efficacy. The higher 
sensitivity of the high - risk group to Alpelisib may be related to the 
higher frequency of PIK3CA gene mutations in this group (Andre et al., 
2019).

In this study, the high-expression group of TACR1 showed lower 
IC50 values in drug sensitivity analysis, indicating higher sensitivity to 
most drugs except Alpelisib and Fulvestrant. This suggests that high 
TACR1 expression may be associated with enhanced responsiveness of 
breast cancer cells to these medications. Correlation analysis further 
validated this finding, revealing a significant negative correlation be
tween TACR1 expression and drug responsiveness (i.e., higher TACR1 
expression was associated with lower IC50 values and greater drug 
sensitivity), which provides guidance for clinical medication selection.

However, this study has several limitations. First, it relies entirely on 
data from the TCGA database. Although external validation was per
formed using GEO datasets, results should be verified through additional 
clinical experiments. Second, a larger cohort of breast cancer patients is 
needed to validate the clinical predictive value of the nomogram. If 
possible, mechanistic studies should further analyze and validate how 
the identified target genes (and their corresponding perioperative 
anesthetic drugs) influence breast cancer progression.

5. Conclusion

In this study, we constructed a risk model based on perioperative 
anesthesia-related drug target genes (PARDTGs) and found that the 
model performed well in other validation cohorts. A nomogram was also 
developed for potential clinical application. Based on this model, pa
tients were divided into high- and low-risk groups for prognostic anal
ysis, immune infiltration analysis, and genomic analysis. In addition, 
drug sensitivity analysis was conducted to provide guidance for clinical 
medication.
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