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ARTICLE INFO ABSTRACT
Keywords: Introduction: This study aimed to create a survival prediction model for breast cancer(BC) using perioperative
Breast cancer anesthesia - related drug target genes(PARDTGs). It explored their immune microenvironment and drug sensi-
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tivity for personalized therapy.

Methods: Transcriptomic sequencing data of BC were downloaded from The Cancer Genome Atlas (TCGA)
database. Common PARDTGs were retrieved from the DrugBank and ChemBL databases. Transcriptomic data
were analyzed to identify differentially expressed PARDTGs (DE-PARDTGs) using rigorous statistical thresholds.
A total of 101 machine learning algorithms were applied to construct PARDTG-based survival prediction models.
Patients were stratified into high- and low-risk groups based on model-derived risk scores. Model performance
was validated using an independent dataset from the Gene Expression Omnibus (GEO). Clinical-pathological
correlations, immune profiling, and mutational landscapes were compared between risk groups in the TCGA-
BRCA cohort. Drug sensitivity to commonly used therapies was predicted via transcriptomic correlations.
Results: We identified five DE - PARDTGs (PTGS2, TACR1, ADRB1, ABCB1, ACKR3) for a BC prognostic model.
Receiver Operating Characteristic - Area Under the Curves ( ROC - AUCs) for 1 -, 3 -, 5 - year overall survival(OS)
were 0.722, 0.730, 0.691. TACR1 and ADRBL1 high - expression meant better prognosis. Risk groups differed in
immunity, with TACR1 correlating with immune checkpoints and drug sensitivity. Conclusions: The PARDTG -
based model predicts BC survival independently. TACR1, key to immune response and drug sensitivity, could be
a new therapeutic target. These results stress the importance of focusing on perioperative anesthesia - related
drug targets in BC research.

1. Introduction According to the latest statistics, the number of newly diagnosed breast
cancer cases globally has exceeded that of lung cancer, making it the

Breast cancer(BC) is one of the most prevalent malignancies among most common cancer (Bashar and Begam, 2022). Meanwhile, breast
women worldwide, with persistently high incidence and mortality rates. cancer is also a leading cause of cancer-related deaths among women,
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accounting for 15 % of all cancer-related fatalities (Global Burden of
Disease Cancer et al., 2019). Treatment modalities for breast cancer
include surgery, radiotherapy, chemotherapy, endocrine therapy, and
immunotherapy. The vast majority of patients undergo surgical pro-
cedures. In recent years, an increasing number of studies have demon-
strated that perioperative events influence the risk of cancer recurrence,
and the use of drugs such as p-agonists and intravenous anesthetics
during the perioperative period is associated with patient prognosis
(Hiller et al., 2017). Therefore, perioperative anesthesia management is
not only crucial for patients’ short-term recovery but also merits
attention for its potential impact on long-term prognosis. In recent years,
research has revealed that perioperative anesthesia-related drugs may
not only affect the physiological state of patients during the periopera-
tive period, thereby influencing the biological behavior of cancer cells
(Wall et al., 2019), but may also act on specific target pathways or
regulate the expression of certain genes, affecting the biological
behavior of breast cancer and potentially impacting patient prognosis
(Inada et al., 2011; Kwakye et al., 2020; Yang et al., 2017). This makes
the potential role of anesthesia in breast cancer treatment an important
yet understudied area.

Previous studies have shown that perioperative anesthesia-related
drugs such as sevoflurane (Deng et al., 2020; Kim et al., 2023), propo-
fol (Wang et al., 2020b), and midazolam (Lu et al., 2021) may influence
cancer progression by affecting the proliferation, apoptosis, invasion,
and drug resistance of cancer cells, regulating the tumor microenvi-
ronment, or modulating the immune system (Kadantseva et al., 2024).
However, there is a paucity of research on the expression changes and
clinical significance of perioperative anesthesia-related drug target
genes (PARDTGs) in breast cancer, especially their specific roles in
breast cancer progression and prognosis. Additionally, perioperative
anesthesia typically involves the combined use of multiple drugs, and
studies on individual anesthetics may not fully elucidate the compre-
hensive impact of anesthesia on breast cancer patients. In contrast, the
target genes of commonly used perioperative anesthesia-related drugs
may play a more extensive and sustained role in the occurrence and
development of breast cancer. Therefore, exploring these genes can
provide deeper insights into the potential impact of anesthesia on breast
cancer.

In this study, we utilized PARDTGs in combination with breast
cancer transcriptomic and genomic data to screen for differentially
expressed genes and construct a risk model for predicting patient
prognosis. We analyzed the expression of these genes and their associ-
ations with clinical outcomes, aiming to explore their roles in the
development, personalized treatment, and prognosis prediction of
breast cancer. This research not only offers a new perspective for pre-
cision medicine in breast cancer but also provides evidence for the po-
tential impact of anesthesia on breast cancer treatment. The analysis
flowchart is shown in Fig. 1.

2. Methods
2.1. Clinical samples and data collection

Transcriptome sequencing data of breast cancer patients from The
Cancer Genome Atlas database (TCGA,https://www.cancer.gov/ccg/re
search/genome-sequencing/tcga) were downloaded using the TCGA-
biolinks package in R software (Version 4.3.2). Perioperative anesthesia-
related drug target genes (PARDTGs) were identified from the DrugBank
database  (https://go.drugbank.com/) and Chembl database
(https://www.ebi.ac.uk/chembl/).  External validation datasets
GSE1456 and GSE45827 were downloaded from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) using the GEO-
query package.

Computational Biology and Chemistry 120 (2026) 108681
2.2. Identification of differentially expressed PARDTGs

Transcriptome sequencing data were processed and normalized.
Differential expression analysis was performed using the DESeq2 pack-
age in R to screen for significantly differentially expressed genes (DEGs)
with a threshold of |logz fold change (FC)| > 1 and p < 0.05. An inter-
section was taken between PARDTGs and all DEGs to extract differen-
tially expressed PARDTGs. The pheatmap package was used to generate
volcano plots, heatmaps, and Venn diagrams to visualize the expression
patterns and screening results of differentially expressed genes.

2.3. GO and KEGG enrichment analysis

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and
Genomes) enrichment analyses were conducted using the clusterProfiler
package in R, with a significance threshold of p < 0.05. The top 20
enriched terms were selected and visualized via circle plots, chord dia-
grams, and correlation plots to present the results.

2.4. Screening of key genes and construction of prognostic model

Survival information of breast cancer patients was downloaded from
the UCSC Xena official website (https://xena.ucsc.edu/). Survival data
were integrated with the expression levels of 48 commonly used peri-
operative anesthesia-related drug target genes (PARDTGs) identified in
this study. The "Mimel" package in R was used to construct prognostic
models using 101 machine learning methods, with the following specific
steps:1.Key gene screening: Five key genes significantly associated with
survival were selected from 48 PARDTGs via univariate Cox propor-
tional hazards regression analysis.2.Model construction: Prognostic
models were developed using the 101 machine learning methods based
on the five key genes, and risk scores were generated.3.Model evalua-
tion: The grouping ability of the risk model was assessed via Kaplan-
Meier (K-M) survival curves and log-rank tests.4.External validation:
The GEO cohort was used as an independent validation set to further
verify the model’s reliability.5.Model performance assessment: Time-
dependent receiver operating characteristic (ROC) curves for one-year,
three-year and five-year survival were plotted using the "survival" and
"timeROC" packages in R, and the area under the curve (AUC) was
calculated to evaluate the model’s predictive performance.

2.5. Screening of core genes and external validation

The R package "Mimel" was used for further screening of core genes.
Box plots of core gene expression levels between normal and tumor
groups were plotted, and the expression of core genes was validated
using GEO datasets (https://www.ncbi.nlm.nih.gov/geo/). Protein
expression levels of core genes were verified on the UALCAN(The Uni-
versity of ALabama at Birmingham CANcer) website (https://ualcan.pat
h.uab.edu/analysis.html).

2.6. Construction of nomogram

Clinical information was downloaded from the UCSC Xena official
website (https://xena.ucsc.edu/). Univariate and multivariate Cox
regression analyses were performed on clinical information and risk
scores using the "survival" package to evaluate the independent pre-
dictive ability of risk scores. Nomograms were constructed using the
"rms" package in R by integrating significant factors from multivariate
Cox regression analysis to predict the one-year, three-year, and five-year
overall survival of breast cancer patients.

2.7. Clinical correlation analysis

Clinical data of breast cancer (BC) patients were integrated to
analyze differences in risk scores across different clinical characteristic
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groups. Chi-square tests were used to compare the distribution of clinical
characteristics between high-risk and low-risk groups. Raincloud plots
and heatmaps were generated using the ComplexHeatmap package in R,
while stacked plots were created with the "ggplot2" and "RColorBrewer"
packages.

2.8. Immune-related analysis

Immune cell infiltration analysis was performed using the Xcell and
Cibersort algorithms via the "IBOR" package in R, with the following
steps:

1) Data normalization: Results of immune infiltration analysis were
normalized.

2) Difference comparison: Immune infiltration differences were
compared between normal and tumor tissues, high-risk vs. low-risk
groups, and high vs. low expression groups of TACR1 and ADRB1 genes.

3) Visualization Box plots were plotted using ggplot2. Mantel tests
were conducted on TACR1, ADRB1, risk scores, and immune checkpoint
genes using the "vegan" package, followed by butterfly plot visualiza-
tion. Wilcoxon rank-sum tests were used to compare immune checkpoint
gene expression between high-and low-risk groups, with lollipop plots
generated via "ggplot2".

2.9. Genomic mutation profiling analysis

Mutation annotation format (MAF) data of breast cancer patients
were downloaded from the TCGA database using the "TCGAbiolinks"
package in R. Genomic mutation characteristics were analyzed with the
"maftools" package, and waterfall plots were plotted. Tumor mutational
burden (TMB) and mutational allele tumor heterogeneity (MATH) were
calculated for survival analysis. Violin plots and survival curves were
generated using "ggviolin"and" ggsurvplot", respectively.

2.10. Drug sensitivity analysis

Drug sensitivity analysis was performed using the "oncoPredict"
package in R. Drug response data were obtained from the GDSC(Geno-
mics of Drug Sensitivity in Cancer) database and analyzed in conjunc-
tion with breast cancer gene expression data, with normalization of the
gene expression matrix. The IC50 values (half maximal inhibitory con-
centration) of samples to different drugs were calculated using built-in
functions of "oncoPredict". The ggpubr package and Wilcoxon rank-
sum test were used to further compare drug response differences be-
tween high-risk and low-risk groups, and box plots were generated.
Correlation analysis between core genes (TACR1 and ADRB1) and
commonly used clinical drugs was performed and visualized using the
"ggplot2" package.

2.11. Statistical Analysis

All statistical analyses were conducted using R software (version
4.3.2 and version4.4.2). P < 0.05 was considered statistically
significant.

3. Result

3.1. Identification of differentially expressed perioperative anesthesia-
related target genes

We downloaded transcriptomic data from 1118 breast cancer sam-
ples and 113 normal samples in the TCGA database. To investigate
global gene expression differences between normal and tumor samples,
differential expression analysis was performed, identifying a total of
5014 differentially expressed genes (DEGs), including 3161 upregulated
and 1943 downregulated genes (|logzFC|= > 1 and p < 0.05). Principal
component analysis (PCA) of all DEGs was conducted to visualize
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sample clustering, revealing a clear separation between tumor and
normal samples (Fig. 2A). A volcano plot was generated to display DEGs
(Fig. 2B).

A total of 120 perioperative anesthesia-related drug target genes
(PARDTGs) were identified from the Drugbank (https://go.drugbank.
com/) and Pubchem (https://pubchem.ncbi.nlm.nih.gov/) databases
based on the types of drugs commonly used in the perioperative period
(including sedative-hypnotics, analgesics, etc.) and in combination with
clinical guidelines ( Supplementary Table 4,5 ) . An intersection anal-
ysis between these 120 PARDTGs and the 5014 DEGs yielded 48
differentially expressed PARDTGs (DE-PARDTGs) (Fig. 2C, Supplemen-
tary Table 3). A heatmap was created to visualize the expression patterns
of these 48 genes (Fig. 2D).

Further principal component analysis (PCA) was performed using the
48 DE-PARDTGsS, and the results (Fig. 2E) showed a significant separa-
tion between tumor and normal samples, indicating substantial differ-
ences in the expression of these genes between the two groups.

3.2. GO and KEGG analysis

GO and KEGG enrichment analyses were performed on the 48 DE-
PARDTGs. GO analysis revealed enrichment of these genes in biolog-
ical processes (BP), cellular components (CC), and molecular functions
(MF) (Fig. 3A). Specifically, they were predominantly enriched in bio-
logical processes such as synaptic transmission, monoamine neuro-
transmitter transport, membrane potential regulation, and ion
transmembrane transport. Significant enrichment was also observed in
molecular functions including receptor activity, G protein-coupled re-
ceptor signaling, and ion channel regulation.

KEGG pathway enrichment analysis showed that these genes were
significantly enriched in a series of pathways, including the cAMP
signaling pathway, calcium signaling pathway, neuroactive ligand-
receptor interaction, nicotine addiction pathway, and angiogenesis-
related pathways (Fig. 3B).

3.3. Construction of prognostic model

We employed 101 machine learning methods to develop a prognostic
model using the48 DE-PARDTGs in breast cancer. During model con-
struction, univariate regression analysis was first performed to screen
five key genes: PTGS2, TACR1, ADRB1, ABCB1, and ACKR3. The prog-
nostic model constructed by the StepCox[both]+GBM method demon-
strated optimal performance in both the training and validation sets
(Fig. 4A).

Patients in the TCGA-BRCA cohort were stratified into high- and low-
risk groups based on the median risk score of this model. Scatter plots of
overall survival information showed a significantly higher number of
deaths in the high-risk group (Fig. 4B, C). Heatmaps depicting the
expression profiles of the five key genes revealed distinct patterns be-
tween the two risk groups (Fig. 4D). Kaplan-Meier survival analysis
indicated a significant difference in overall survival between high- and
low-risk groups (p < 0.0001).

Time-dependent receiver operating characteristic (ROC) curves were
generated to evaluate model performance, yielding area under the curve
(AUC) values of 0.722, 0.730, and0.691 for one-, three-, and five-year
survival, respectively, in the TCGA-BRCA cohort (Fig. 4H, I).

External validation in the GSE1456 cohort confirmed consistent re-
sults: patients stratified by the same risk model showed higher mortality
in the high-risk group (Fig. 4E, F), distinct expression patterns of key
genes (Fig. 4G), and significant survival differences (p < 0.0001). The
AUC values for one-, three-, and five-year survival in the validation
cohort were 0.761, 0.641, and 0.663, respectively (Fig. 4J, K).

These results demonstrate the robust performance and clinical
applicability of our risk model in predicting breast cancer prognosis
across independent cohorts.
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3.4. Screening of core genes

Using 18 bioinformatics tools to screen for core genes, 17 of these
methods consistently identified TACR1 and ADRBI1 (Fig. 5A). Expression
validation of TACR1 and ADRB1 was performed in the GSE45827
cohort. Results showed that both genes were lowly expressed in tumor
tissues and highly expressed in normal tissues, consistent with findings
from the TCGA cohort. Heatmaps of core gene expression indicated that
TACR1 and ADRB1 were both under-expressed in the high-risk group,
suggesting that their high expression may be associated with lower
tumor incidence and better prognosis (Fig. 4D, G; Fig. 5B, C, F, G).
Additionally, protein expression levels of core genes were verified using
the UALCAN website. Results showed that TACR1 (also known as SPR)
was significantly downregulated in tumor tissues (Fig. 5D).Patients were
stratified into high- and low-expression groups based on the median
expression levels of TACR1 and ADRBI1. Survival analysis revealed that
patients in the high-expression groups exhibited significantly longer
survival than those in the low-expression groups (Fig. 5E, H). These
findings indicate that high expression of TACR1 and ADRBI is associ-
ated with favorable prognosis.

3.5. Nomogram and clinical correlation analysis

Next, we validated the prognostic value of the risk score through
univariate (Fig. 6A) and multivariate (Fig. 6B) Cox regression analyses
incorporating clinical information. Results demonstrated that the risk
score was statistically significant and could serve as an independent
prognostic factor. To enhance the efficiency and accuracy of predicting
overall survival in breast cancer patients, we developed a clinically
applicable nomogram. This nomogram integrates age, gender, tumor
stage, and risk score to comprehensively estimate the one-, three-, and
five-year survival probabilities of patients (Fig. 6C). Calibration curves

were plotted to compare predicted probabilities with actual outcomes,
confirming the good predictive performance of the nomogram (Fig. 6D).
Using patient survival data, we generated a heatmap integrating risk
groups and clinical information to visualize the distribution of survival
time, clinical characteristics, and risk stratification. Results showed that
patients in the high-risk group had significantly shorter survival times,
higher mortality rates, older ages, and a higher proportion of male pa-
tients (Supplementary Figure 2). We further investigated whether risk
scores differed across age, gender, and tumor stage subgroups, revealing
significant associations with age and gender. These findings suggest that
certain clinical factors may influence patient prognosis. Additionally,
analysis of MKI67 (encoding Ki67) expression in different risk groups
showed significantly higher expression in the high-risk group, which
may contribute to the poorer prognosis of this subgroup (Fig. 6E). Chi-
square test results for clinical characteristic distribution between high-
and low-risk groups indicated significant differences in multiple pa-
rameters (Fig. 6F). Survival analysis across clinical subgroups (stratified
by age, T stage, N stage, M stage, and overall tumor stage) demonstrated
that the risk score could significantly distinguish patient outcomes in all
subgroups (P < 0.05), highlighting its broad applicability and robust-
ness across diverse populations (Supplementary Figure 1).

3.6. Immune infiltration analysis

To analyze the composition and function of immune cells across
different groups, we performed immune infiltration analysis on normal
and tumor tissues using the XCell algorithm. Results showed that eo-
sinophils, MEP (myeloid erythroid progenitors), mesangial cells, MSCs
(mesenchymal stem cells), NKT cells(Natural Killer T cell), osteoblasts,
and plasma cells were more abundant in tumor tissues compared to
normal tissues. Tumor tissues also exhibited higher ImmuneScore, while
normal tissues had significantly higher HSC (hematopoietic stem cell)



D. Yu et al.

A

Computational Biology and Chemistry 120 (2026) 108681

UTR regulation of membrane potential
OSR1 regulatlon of postsynaptlc membrane potential
G O SCN;}?CM monoamine transport
40 o regulathn of monoatomic ion transmembrane transport
o WW % SCN9A chemical synaptic transmission, postsynaptic
e O OPRK1 N LC6A4 size
€ 8 fo y,
" 2 05 ADRAZR : 7 SCN4A @5
sLceAz GABRAT @ 0
ADRA2A ADRB2 @5
71 2 NOSH OPRD1 @
7 0
[ 9 ) SLC18A1
(" 6 > & @% % § GRINchategory
> allit- TACR1 hemical synaptic
P ) ADORA2A HTR3A ransmissi ;?ostsynaptlc
° PO s MONO@MINE transpor’t
2 3\, CLRAY CHRNA4
2% GRIN1 SCNBA =regulation of membrane
o potential
® ADEDY | KCNA1 equlation of monoatomic ion
- ) DRD4 | SCN11A A S
BP © CHRNA1 CHRNA2 S—r
Up B %; . GRIN2C DRD2 HRHiBHon S SN aPtc
ce Down 3 gl © ) ) . )
MF o ° chemical synaptic transmission, postsynaptic
© s 8 9]
_Logwézvalue) 2 g regulation of mono!omic ion transmembrane transport
15 o R catecholamine transport
=y excitalory postsynaptic potentiat
10 © 8 2 numbe; of genes caleium ion transport
5 5 8 2 adenylate cyc!ase modulaung G protein=coupled receptor signaling pathway
0 o
= 3 15
/ = 5 :’ O monoamine-transport ®
4 &/ é) O 18 sodlum fon transport regulation of postsynaptic membrane potential
P N O mufticeliulaiorganismal response to stress
b/ &
9 & & regul%tjon of metal ion transport
5 b S p.adjust ’ :
IS W & regulation of membrane potential
9 e b 1.5e-09 . vascular process in cireula*ory system
L T . organic hydroxy,compound transport musclicontraction
1.0e-09 L
muscle 5’stem process
5.0e-10 \ N Ve
sodium jon transmembrane-fransport.
6 B o
’943,00__09 Qe <0600 g,vw" regulation of tube diameter regulaﬁm‘ of tube size
09 18
0 T’“’“"‘M ov blood vsssel diameter maintenance
5 20 0 20 Neuroactive ligand-receptor interaction category
0 Calcium signaling pathway . 5 .
31 \_.TEM OPRK1 Calcium signaling pathwa
“53040 04080 _Hormone signaling 9 9p Y
ADORA2A

20 2
S0 21 ‘\73‘%\
Q V)‘(rjﬁ“/ A0 7 0%~ 0

\ cAMP signaling pathway CcAMP signaling pathway
ADRA2B V |\ Nicotine addiction Hormone signaling
S K A 2 // %
s av ) ° ‘%’07 % GLRA1 / \\‘ 2 GABRAT e e éjrraogctlve ligand-receptor
5 25
Y 4 6 4 1B g, o GRIN1 ’// ADRB3 Nicotine addiction
7, /i
S A 2 2 0 é ADRB1 ADRB2
$ é” 4 ) s% > \\ size
2. AD| OPRD1
o /& & °, 2 \ ®5
- 4 © DRD4 “_crnzz @ 10
15
<) f\% by Environmental R - 1‘& CHR “TACR1 . 20
~ S IPnformallon o A2 .
rocessing
H o o 3 omic/ e bTRIA
Organismal Systems
S ™ - Cellular Processes o SHENASHIRS . . . s )
L other " N x| Neuroactive ligand=receptor interaction
13
o E ) ~Log10(Pvalue) Down 2
Q S 20 @, a 8
@ = 15 &
=
- ; :
o £ ;0 N o s number of genes Hormone signaling
%, Q 0 % n’? O 5 . o
oS, &) O 10 Nicotine addiction
Q S/N
P-3
T o 4 gS O
0 K Q o
o < 1 & O 2 cAMP signaling’pathway
‘}Qo < o & @ Neuroactive ligand signaling
14 v ©
& %9 X b gV A XY p.adjust O
3e-05 Calcium signaling pathway
[Z280N5S X0
6‘;09 5 S Qc,c 2e-05
%™ Y s g Dot
2ty qesy 1e-05 . A
¢ Yoesy =5 1028 0 Cocaine addiction
oz —9eLy0esy 2
0 0z 0 b

Fig. 3. GO and KEGG enrichment analysis (A) GO enrichment analysis — Circle plots, gene-pathway correlation plots, and pathway-network association diagrams for
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plots, and pathway-network association diagrams.

infiltration (Fig. 7A). In immune infiltration analysis of high- and low-
risk groups in tumor tissues, MEP, NKT cells, smooth muscle cells, as-
trocytes, MSCs, and mesangial cells were more abundant in the high-risk
group. Conversely, CD4 + Tem (effector memory T cells), CD4 + Tcm
(central memory T cells), mast cells, HSCs, class-switched memory B

cells, and basophils were more enriched in the low-risk group (Fig. 7B).
Cibersort algorithm analysis of tumor immune microenvironment
composition between risk groups revealed higher M1 macrophage
infiltration in the low-risk group and higher M2 macrophage infiltration
in the high-risk group. Stratifying patients into high- and low-expression



D. Yu et al.

Computational Biology and Chemistry 120 (2026) 108681

A -- B ' E o '
StepCoxfforward] + GBM 074 : !
StepCox[both] + GBM _— Cohort 000 ] oo Y
StepCox[backward] + GBM 0.69 o ! B
RerecoM on o IMTCGA B : S /E
Lasso + ggm g;} 322 [ GsE1456 o : 8 7
. g = H 1
CoxBoost + GBM 0n 0.64 14 ! S ‘A":’ ' 1
SuperPC 06 06 ~~" risk group 1/ : _
StepCox(forward] + SuperPC 0.6 0.6 a0 1 - High 040 4 \ risk group
StepCox[both] + survival-SVM 062 06 : P Low ’ . » High
RSF + SuperPC 06 0.6 ! ) . 1 e Low
i . 1
COXLBaOSOSS?t : gﬁgggg gg gg " 3ug’a“ent; e((ﬁzmso)em 1 50 ' 100 150
survival- SVM 061 059 C , F Patients (N=150)
StepCox([forward] + survival-SVM 061 059 | ] : * Alive .
RSF + survival-SVM 061 059 Ceind 0 . o oDead P8 maeten™ . e s
Lasso + survival-SVM 061 059 ~Index S . ) © P ""'1" "'.'- J
CoxBoost + survival-SVM 061 0.59 - > B 1 S L o - | . .
StepCox(forward] + Ridge 06 0.58 09 Py ! . . o6 $ Ve, < \’ S
StepCox[forward] + plsRcox 06 0.58 Es ‘I = LM N A
StepCox{forward] + Lasso 06 0.58 08 % LA | . = s I
StepCox[forward] + Enet[a=0.9] 06 0.58 07 > X g, 1°° .
StepCox[forward] + Enet[a=0.8] 06 0.58 ’ 210 o s ° : N
StepCox[forward] 0.6 0.58 06 7 . v 3 P
RSF + StepCox[forward] 06 0.58 = . =2 ° . % .
RSF +Ridge 0.6 058 e @ : Lo ee
RSF + plsRcox 06 0.58 g o | ® - |
RSF + Lasso 06 0.58 o O o ® Dead : .
Eg; * Ene&a=8'g} gg ggg 0 300 "s00 900 0 50 100 150
+ Enetfa=0. ! : i - Patients (N=159)
Ridge 06 058 D Patients (N=1080) G
plsRcox 06 0.58
Lasso + StepCox[forward] 06 0.58 risk grhOUP rlsng:oup
A = T \m |~ ] H I /| “' [ F
asso I I
Enea=09] 06 058 PTGS2 | eresz| | If 1| | il
oorard] 06 09 | HIHI HHH H\ mwort | 11 I l
CoxBoost + StepCox[forward)] 06 0.58
CoxBoost + Ridge ~ 06 058 ADRB1 ‘ | ADRET “| Il “ H | ‘ | RIFRD O
CoxBoost + plsRcox 06 0.58 . I
Cooost+Lasso 06 058 fi i ||HH||H| LTI
CoxBoost + Enet[a=0.9] 06 0.58
CoxBoost + Enet[a=0.8] 06 0.58

H |

TCGA-BRCA KM-plot Based on Risk Groups

Risk Group =~ Low

- High

Risk Group == Low “ High

*m

1.00]

o
S
a3

o

=

3

o
2
X

Survival Probability

Survival Probability

p=137e-08 p=0.0068

0.00 0.00

25 0 2 4 6 8
Time (years)

10 15
Time (years)

20

GSE1456 KM-plot Based on Risk Groups

J

Time-dependent ROC Curve - TCGA

Time-dependent ROC Curve - GSE1456
Time

1.00

-

Time

1.00

-
3 3

-5 -5

e
by
3

0.75

)
@
3

050

025 0.25

AUC (1y): 0.722
AUC (3y): 0.730
AUC (5y): 0.691

True Positive Rate (Sensitivity)
True Positive Rate (Sensitivity)

AUC (1y): 0.761
AUC (3y): 0.641

- 000 AUC (5y): 0.663

0.00

025
False Positive Rate (1-Specificity)

050 075 1.00 0.00

025
False Positive Rate (1-Specificity)

050 0.75 1.00

Fig. 4. Construction of the prognostic model (A) Model development using 101 machine learning methods. (B) Distribution of risk scores in the TCGA-BRCA cohort
based on the PARDTG-derived model. (C) Survival status of high- and low-risk groups in the TCGA-BRCA cohort based on the DE-PARDTG model. (D) Expression
profiles of model-constructed genes in high- and low-risk groups of the TCGA-BRCA cohort. (E) Distribution of risk scores in the GEO cohort based on the PARDTG-
derived model. (F) Survival status of high- and low-risk groups in the GEO cohort based on the PARDTG-derived model. (G) Expression profiles of model-constructed
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groups based on the median expression levels of TACR1 and ADRB1, we
observed similar trends in immune cell composition between the two
groups. Specifically, CD4 + Tem, HSCs, and class-switched memory B
cells were more abundant in the high-expression groups (Fig. 7C, D),
which also showed better prognosis (Fig. 5F, I). This suggests that these
immune cells may be associated with favorable outcomes.

3.7. Immune checkpoint analysis

Correlation analysis was performed among core genes TACRI,
ADRBI, risk scores, and immune checkpoint genes (Fig. 8A). Results
showed significant correlations between TACR1 and common immune
checkpoint genes such as BTLA, CTLA-4, and PDCD1, indicating that
TACR1 may interact with immune checkpoint genes to influence tumor
development and progression, thereby affecting prognosis. Expression of
immune checkpoint genes was compared between high- and low-risk
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groups. Multiple common checkpoint genes including BTLA, CTLA-4,
and PDCD1 were significantly upregulated in the low-risk group
(P < 0.0001). This may be associated with the better prognosis of the
low-risk group, suggesting that patients in the low-risk group are more
likely to benefit from immunotherapy (Fig. 8B).

3.8. Genomic mutation profiling analysis

Genomic variability analysis was performed on MAF(Mutation
Annotation Format) data of TCGA-BRCA. First, mutation profiles were

compared between high- and low-risk groups, revealing distinct muta-
tional patterns. In the high-risk group, 450 out of 516 samples (87.21 %)
had mutations, with the top three mutated genes being TP53, PIK3CA,
and TTN, primarily involving frameshift deletions and missense muta-
tions. In the low-risk group, 417 out of 474 samples had mutations, with
the top three genes being PIK3CA, TP53, and CDH1, mainly character-
ized by missense and nonsense mutations (Fig. 9A). Subsequently, genes
with significantly different mutation frequencies between risk groups
were analyzed (Fig. 9B). PTPRD and BRCA2 exhibited higher mutation
rates in the high-risk group (OR<1, p < 0.01), while CDH1 was more
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frequently mutated in the low-risk group. This suggests that CDH1 may
be closely associated with favorable prognosis. Analysis of tumor
mutational burden (TMB) revealed significant differences between risk

groups, with the high-risk group showing higher TMB (Fig. 9C). Strati-
fying patients by the optimal TMB cutoff value, the low-TMB group
demonstrated better survival outcomes (Fig. 9D). Similarly, mutational

allele tumor heterogeneity (MATH) was significantly higher in the high-
risk group (Fig. 9C). Patients with high MATH had poorer prognosis
compared to low-MATH counterparts (Fig. 9D).
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Fig. 7. Immune infiltration analysis (A) Differences in immune infiltration between normal and tumor tissues in the TCGA-BRCA cohort. (B) Differences in immune
infiltration between high- and low-risk groups based on the PARDTG-derived model in the TCGA-BRCA cohort. (C) Differences in immune infiltration between high-
and low-expression groups of TACR1 in the TCGA-BRCA cohort.(D) Differences in immune infiltration between high- and low-expression groups of ADRBI in the

TCGA-BRCA cohort. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
3.9. Drug sensitivity analysis

Drug sensitivity prediction analysis was performed on patients in the
TCGA-BRCA cohort. Fifteen commonly used drugs for breast cancer
treatment with significant therapeutic effects were selected, and their
sensitivity was compared between high- and low-risk groups. Results
showed significant differences in drug sensitivity between the two
groups. The low-risk group generally exhibited lower IC50 values,
indicating higher sensitivity to these therapeutic drugs (Fig. 10A). In the
TCGA-BRCA cohort, patients were stratified into high- and low-
expression groups based on the median expression levels of core genes
TACR1 and ADRBI for drug sensitivity analysis. Notably, TACR1 low-
expression groups showed significantly higher sensitivity to Alpelisib
and Fulvestrant, while TACR1 high-expression groups were more sen-
sitive to the remaining 13 drugs. For ADRB1, high-expression groups
demonstrated higher sensitivity to all drugs except Alpelisib, with sig-
nificant differences observed in sensitivity to 14 drugs compared to low-
expression groups (Fig. 10B). Correlation analysis between TACR1/
ADRBI expression levels and responses to the 15 drugs revealed: TACR1
expression was positively correlated with Alpelisib, Fulvestrant, and
Ribociclib (higher expression — higher IC50 — lower sensitivity) and
negatively correlated with all other drugs (higher expression — lower
IC50 — higher sensitivity). ADRB1 expression was negatively correlated
with all drugs except Alpelisib (higher expression — lower IC50 —
higher sensitivity) (Fig. 10C).

10

4. Discussion

Breast cancer(BC) is one of the most common malignancies among
women worldwide, with its incidence and mortality rates consistently
ranking among the highest. Surgery is a common treatment for breast
cancer, and the majority of patients require surgical intervention.
Perioperative events can influence patient prognosis to some extent,
making the impact of perioperative anesthesia-related medications
worthy of attention. These medications may regulate the biological
behavior of breast cancer through their target genes, thereby affecting
patient outcomes. Despite the complex and diverse types of periopera-
tive anesthetic drugs, most existing studies focus on the potential effects
of specific anesthetics on breast cancer. Our study aimed to construct a
risk prediction model by investigating the target genes of commonly
used perioperative anesthesia-related drugs, thereby predicting breast
cancer prognosis from a novel perspective and exploring the potential
roles of these genes in tumorigenesis, development, and prognosis.

We identified 48 differentially expressed perioperative anesthesia-
related drug target genes (DE-PARDTGs) in breast cancer, which were
significantly enriched in pathways such as cAMP signaling, calcium
signaling, neuroactive ligand-receptor interaction, nicotine addiction,
and angiogenesis.Among them, cAMP can promote cancer cell growth,
and can also inhibit cell proliferation and survival under specific con-
ditions (H. Zhang et al., 2024). The cAMP/PKA/CREB pathway has been
shown to act as a downstream signaling pathway of JAK/STAT3 to
promote chemoresistance in inflammatory breast cancer, while
PKA-mediated inhibition of ERK1/2 may enhance the sensitivity of
triple-negative breast cancer cells to doxorubicin (Yu et al., 2017a).
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the central nervous system. Studies have shown that this process can
activate downstream pathways such as JAK2/STAT3 and PI3K/Akt,
thereby promoting the proliferation, migration, and anti-apoptotic
ability of breast cancer cells (Guha et al., 2014). Additionally, nicotine
increases the proportion of breast cancer stem-like cells, enhancing
tumor drug resistance and metastatic potential. Angiogenesis is a critical

11

>

and is associated with reverse

Studies have shown that calcium signaling can regulate many
immune-related processes in cancer, modulate immune checkpoints,
multidrug resistance and inhibition of immune escape (L. Wu et al.

2021).In the nicotine addiction pathway, nicotine promotes dopamine
(DA) release by activating nicotinic acetylcholine receptors (nAChRs) in

reshape the tumor microenvironment,
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Fig. 9. Genomic variation analysis (A) Distribution of the top 20 mutated genes in high- and low-risk groups of TCGA-BRCA. (B) Forest plot of the most significantly
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process for the growth and spread of solid tumors (Ayoub et al., 2022).
These pathways highlight the key roles of our studied PARDTGs in the
development and prognosis of breast cancer.

Using univariate regression analysis, we identified five perioperative
anesthesia-related drug target genes(PARDTGs) significantly associated
with prognosis: PTGS2, TACR1, ADRB1, ABCBI1, and ACKR3. A risk
model was constructed using these five genes. Existing studies have
highlighted the critical role of TACR1 in tumorigenesis and prognosis: In
neuroblastoma, TACR1 has been identified as a potent anticancer target
across various neuroblastoma subtypes (Pohl et al., 2017). In head and
neck squamous cell carcinoma, TACR1 methylation serves as a novel
biomarker (Misawa et al., 2013). Full-length neurokinin-1 (encoded by
TACR1) expression is negatively correlated with tumor lymph node
metastasis (TNM stage) and lymph node metastasis, indicating its role in
breast cancer prognosis (Zhou et al., 2019). ADRB1 has been recognized
as a prognostic biomarker in breast cancer (Li and Liu, 2021). ADRB1
mutations are associated with lower tumor mutational burden (TMB),
and patients with such mutations exhibit better clinical outcomes
(Wang, 2020a). PTGS2 plays a key role in breast cancer biology: it has
been identified as a gene influencing paclitaxel treatment response (J.
Wu et al., 2021), and its activation and overexpression may promote
breast cancer metastasis and drug resistance, thereby affecting prognosis
(Festa-Vasconcellos et al., 2012). ABCB1 gene polymorphisms are
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associated with breast cancer susceptibility (Madrid-Paredes et al.,
2020), and ABCBL is linked to paclitaxel and doxorubicin resistance in
breast cancer cell lines (Fultang et al., 2020; Wang et al., 2023; D. Zhang
et al., 2023), influencing prognosis. ACKR3 regulates breast cancer
metastasis (Stacer et al., 2016), and its high expression is associated with
poorer overall survival (OS) (Yang et al., 2023), consistent with our
findings. These results validate the role of these genes in cancer and
breast cancer development and prognosis, confirming the reliability of
our screening results.

Analysis of immune infiltration between normal and tumor groups
revealed higher ImmuneScore and more abundant immune cell infil-
tration in tumor tissues, indicating immunological changes during
breast cancer progression. Immune infiltration analysis of high- and low-
risk groups showed similar compositions but distinct quantities of im-
mune cells in the microenvironment. The high-risk group was enriched
in MEP(myeloid progenitor cells),NKT(Nature Killer T cell), and MSCs
(mesenchymal stem cells), while the low-risk group had higher pro-
portions of CD4 + Tem(effector memory T cells), CD4 + Tcm(central
memory T cells),mast cells, HSCs(hematopoietic stem cells),class-
switched memory B cells, and basophils.

In the high-risk group, the enrichment of cells such as MEP, NKT, and
MSC may be associated with the formation of a highly aggressive tumor
and an immunosuppressive microenvironment. The enrichment of MEP
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Fig. 10. Drug sensitivity analysis

(A) Box plots showing differences in drug sensitivity between high- and low-risk groups based on the PARDTG-derived model in the

TCGA-BRCA cohort. (B) Box plots showing differences in drug sensitivity between high-/low-expression groups of TACR1 and ADRBI1 in the TCGA-BRCA cohort. (C)
Correlation heatmap between TACR1, ADRB1, and commonly used clinical therapeutic drugs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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(myeloid progenitor cells) may indicate abnormal proliferation of
myeloid cells, which can be altered in the tumor microenvironment to
exert pro-inflammatory and immunosuppressive effects (Gabrilovich
et al., 2012).NKT cells have dual roles in anti-tumor immunity, poten-
tially exerting immunosuppressive effects when induced by the tumor
microenvironment (Tyznik et al., 2014).MSCs (mesenchymal stem cells)
are closely associated with immunosuppression. They inhibit CD8 + T
cell function and promote Treg cell proliferation by secreting immuno-
suppressive factors (e.g., PGE2, IDO), thereby fostering an immuno-
suppressive microenvironment that facilitates tumor growth (Shi et al.,
2017).

In the low-risk group, cells may exhibit more active anti-tumor im-
munity, with CD4 4 Tem (effector memory CD4 + T cells) and
CD4 + Tem (central memory CD4 + T cells) playing crucial roles in
tumor immunity.CD4 + Tcm cells provide long-term immune memory
and rapidly differentiate into effector T cells upon antigen stimulation,
while CD4 + Tem cells mediate rapid effector responses. This suggests
stronger immune memory and adaptive immune responses in the low-
risk group. CD4 + T cells can directly kill tumor cells or indirectly
inhibit tumors by activating innate immune cells or reducing tumor
angiogenesis (Kravtsov et al., 2022). Class-switched memory B cells
were significantly increased in the low-risk group, indicating a protec-
tive role of humoral immunity. These cells produce isotype-switched
antibodies in the tumor microenvironment, which correlate with bet-
ter prognosis in breast cancer patients, enhance responses to
PD-1/PD-L1 immunotherapy, and promote anti-tumor immunity
through antigen presentation and T cell activation (Conejo-Garcia et al.,
2023; Engelhard et al., 2021; Tsou et al., 2016). This aligns with our
immune checkpoint analysis showing that low-risk patients may benefit
more from PD-1/PD-L1 therapy. Mast cells have traditionally been
recognized as participants in allergic reactions, but recently research
indicates their roles in the tumor microenvironment are more complex.
In some contexts, mast cells promote tumor progression, whereas in
breast cancer, they exhibit protective effects (Varricchi et al., 2017).
Previous studies have shown that basophils can infiltrate various human
cancers and exert divergent roles in promoting or inhibiting tumori-
genesis (Poto et al., 2022). Our study found a higher proportion of ba-
sophils in the low-risk group of breast cancer, suggesting a potential
protective role of basophils in breast cancer.

Cibersort immune analysis showed that the proportion of M1-type
macrophages was higher in the low-risk group, while the proportion
of M2-type macrophages was higher in the high-risk group. M1 macro-
phages induce Thl-type immune responses, possess the ability to pro-
mote inflammation and anti-tumor immune activity, and can also
produce reactive oxygen and nitrogen species to phagocytose and kill
tumor cells (Arnold et al., 2014; Pan et al., 2020). M2-type macrophages
can secrete pro-angiogenic factors such as vascular endothelial growth
factor (VEGF) to promote tumor angiogenesis; they can also facilitate
tumor cell invasion and metastasis by degrading various collagens and
other extracellular matrix components (Annamalai et al., 2018; Zhu
et al., 2021). These differences likely contribute to the prognostic dis-
parities between risk groups.

Genomic mutation profiling analysis revealed distinct mutational
landscapes between high- and low-risk groups. The high-risk group
exhibited the highest frequency of PTPRD mutations. PTPRD, which
encodes protein tyrosine phosphatase receptor type D, regulates cellular
signaling and plays critical roles in cell growth, differentiation, migra-
tion, and adhesion (Yu et al., 2017b). Mutations in PTPRD can activate
downstream JAK2/STAT3 signaling pathways, thereby promoting
tumor growth (Veeriah et al., 2009), which may partially explain the
poorer prognosis of the high-risk group. Differences in tumor mutational
burden (TMB) and mutational allele tumor heterogeneity (MATH) were
observed between groups, with the high-risk group showing higher TMB
and MATH, both of which correlate with worse prognosis.

The results of the drug sensitivity analysis showed that the low - risk
group exhibited lower IC50 values for commonly - used therapeutic
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drugs except Alpelisib, indicating higher sensitivity to these drugs. This
suggests that low-risk patients may derive greater benefit from standard
therapies compared to high-risk patients, who may require higher drug
doses or combination strategies to achieve optimal efficacy. The higher
sensitivity of the high - risk group to Alpelisib may be related to the
higher frequency of PIK3CA gene mutations in this group (Andre et al.,
2019).

In this study, the high-expression group of TACR1 showed lower
IC50 values in drug sensitivity analysis, indicating higher sensitivity to
most drugs except Alpelisib and Fulvestrant. This suggests that high
TACRI1 expression may be associated with enhanced responsiveness of
breast cancer cells to these medications. Correlation analysis further
validated this finding, revealing a significant negative correlation be-
tween TACR1 expression and drug responsiveness (i.e., higher TACR1
expression was associated with lower IC50 values and greater drug
sensitivity), which provides guidance for clinical medication selection.

However, this study has several limitations. First, it relies entirely on
data from the TCGA database. Although external validation was per-
formed using GEO datasets, results should be verified through additional
clinical experiments. Second, a larger cohort of breast cancer patients is
needed to validate the clinical predictive value of the nomogram. If
possible, mechanistic studies should further analyze and validate how
the identified target genes (and their corresponding perioperative
anesthetic drugs) influence breast cancer progression.

5. Conclusion

In this study, we constructed a risk model based on perioperative
anesthesia-related drug target genes (PARDTGs) and found that the
model performed well in other validation cohorts. A nomogram was also
developed for potential clinical application. Based on this model, pa-
tients were divided into high- and low-risk groups for prognostic anal-
ysis, immune infiltration analysis, and genomic analysis. In addition,
drug sensitivity analysis was conducted to provide guidance for clinical
medication.
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