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Abstract

Background: Infiltrating immune and stromal cells are important components of the endometrial cancer (EC)
microenvironment, which has a significant effect on the biological behavior of EC, suggesting that unique
immune-related genes may be associated with the prognosis of EC. However, the association of immune-
related genes with the prognosis of EC has not been elucidated. We attempted to identify immune-related
genes with potentially prognostic value in EC using The Cancer Genome Atlas database and the relationship
between immune microenvironment and EC.

Methods: We analyzed 578 EC samples from TCGA database and used weighted gene co-expression network analysis to
screen out immune-related genes. We constructed a protein—protein interaction network and analyzed it using STRING and
Cytoscape. Immune-related genes were analyzed through conjoint Cox regression and random forest algorithm analysis
were to identify a multi-gene prediction model and stratify low-risk and high-risk groups of EC patients. Based on these data,
we constructed a nomogram prediction model to improve prognosis assessment. Evaluation of Immunological, gene
mutations and gene enrichment analysis were applied on these groups to quantify additional differences.

Results: Using conjoint Cox regression and random forest algorithm, we found that TRBC2, TRAC, LPXN, and ARHGAP30
were associated with the prognosis of EC and constructed four gene risk models for overall survival and a consistent
nomogram. The time-dependent receiver operating characteristic curve analysis revealed that the area under the curve for 1-
, 3~ and 5-y overall survival was 0.687, 0699, and 0.76, respectively. These results were validated using a validation cohort.
Immune-related pathways were mostly enriched in the low-risk group, which had higher levels of immune infiltration and
immune status.

Conclusion: Our study provides new insights for novel biomarkers and immunotherapy targets in EC.
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Background

Endometrial cancer (EC) is a common gynecological ma-
lignant tumor [1]. In recent years, the incidence of EC
has increased, with a trend of occurrence in younger
generations [2].

The main causes of EC include obesity and endocrine dis-
orders [3, 4]. The immune microenvironment has been re-
ported to significantly affect the biological behavior and
prognosis of EC [5-7]. Therefore, the expression of inflam-
matory genes might be associated with the prognosis of EC.
However, prognostic models associated with the expression
of immune genes in EC have not yet been established [1].
The establishment of new genome-sequencing technologies
and genomic databases has enabled the discovery of tumor
biomarkers. Several studies have attempted to evaluate the
prognostic value of infiltrating immune and stromal cells in
malignancies (hepatocellular carcinoma, renal cell carcinoma
and osteosarcoma) [8—10]. Thus, we attempted to identify
immune-related genes with potentially prognostic value in
EC using The Cancer Genome Atlas (TCGA) database and
the relationship between immune microenvironment and
EC. This may provide strategies for the development of new
immunotherapy modalities for patients with EC. Figure 1
shows an overview of our study, including the steps involved
in data preparation, processing, analysis, and validation.

Methods

Data sources and preprocessing
TCGA-UCEC-standardized FPKM data (https://
bioinformatics.mdanderson.org/), survival data, and clin-
ical information were downloaded from the UCSC Xena
official website (https://xena.ucsc.edu/). The TME was
assessed in 543 EC samples using the ESTIMATE pack-
age in R (version 4.0.2; https://www.r-project.org) [11].
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Gene expression datasets were prepared using standard
annotation files and uploaded to the CIBERSORT web
portal (http://cibersort.stanford.edu/), with the algorithm
based on the default signature matrix at 1000 permuta-
tions. After converting the gene expression matrix into
the immune cell matrix and applying filtering criteria for
gene transcription (P<0.05) in CIBERSORT (Perm =
1000), 283 samples (6 normal and 277 tumor tissues)
were selected to visualize the matrix of 22 immune cell
fractions.

Visual display of immune cell types

The matrices of 22 immune cell subsets, their correla-
tions, and gene expression profiles were visualized as
barplots, boxplots, heat maps, and t-SNE using the
ggpubr, corrplot, and Rtsne R packages [12].

Evaluation of EC-infiltrating immune cells and the TME
ESTIMATE is a tool used for predicting tumor purity
and the presence of infiltrating stromal/immune cells in
the TME based on gene expression data. The ESTI-
MATE algorithm is based on single-sample gene set en-
richment analysis (ssGSEA), generating three scores,
namely, stromal cell scores, immune cell scores, and ES-
TIMATE scores (which have been shown to exhibit a
higher correlation with tumor purity than stromal-only
and immune-only scores).

Screening representative genes in the EC immune
microenvironment by weighted gene co-expression
network analysis (WGCNA)

We employed the WGCNA to screen for genes with a
median absolute deviation of the top 75% and genes with
MAD >0.01 to analyze the immune score-related
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modules. We then used the WGCNA R package to con-
struct a gene co-expression network, using genetic
methods to generate a dynamic shear module, and per-
formed cluster analysis of the module [13]. Genes with
similar expression levels were assigned to the same mod-
ule, with the important parameters being minModule-
Size=30 and mergeCutHeight=0.25. Our results
showed that genes in the four modules (salmon, red,
royal blue, and purple) had a high correlation with the
immune score (P <0.05). All genes with GS correlation
>0.2 and MM correlation > 0.8 were extracted in the
immune-related modules.

Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) enrichment analyses

Data analysis was performed using clusterProfiler pack-
ages in R [14]. A false discovery rate (FDR) of < 0.05 was
set as the cut-off criterion indicating significant enrich-
ment of functional GO terms and KEGG pathways.

Protein-protein interaction (PPI) network and hub gene
selection

The cytoHubba (version 0.1) plug-in of Cytoscape (ver-
sion 3.7.2) was used to screen out hub genes based on
degree. We constructed a PPI network using STRING
(https://string-db.org/). ClueGO is a plug-in of Cytos-
cape to visualize nonredundant biological terms for large
clusters of genes in a functionally grouped network. We
also performed the GO analysis of key genes and visual-
ized the biological processes using ClueGO (version
2.5.4). In addition, we constructed a hierarchical cluster
of key genes.

Selection and verification of prognosis-related genes

The entire cohort (# =529) was divided into the
training (n =395) and validation (n =134) groups at a
3:1 ratio based on stratified sampling according to
AJCC staging. We wused the expression data of
immune-related genes transformed by log,(FPKM + 1)
and the corresponding clinical information to screen
out the prognosis-related genes using univariate Cox
proportional hazards regression analysis in the train-
ing cohort (Hazard Ratio [HR] = 1, FDR < 0.05). Then,
prognosis-related genes were used in the subsequent
analysis. We applied the random forest algorithm to
construct a multigene signature for predicting prog-
nosis in EC using the “randomForest” package of R
software [15]. The top four genes with high IncNode-
Purity value were selected for the downstream ana-
lysis. Subsequently, multivariate Cox regression was
employed to construct the prognosis-related gene
model. Finally, we performed 100 stratified samplings
of all patients (n=395). Univariate Cox regression
analysis was performed in each group, and
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prognostic-related genes were sorted according to
FDR to verify the prognostic value of the four genes.
In each group, the patients were grouped according
to their risk scores, and then Kaplan-Meier analysis
was performed to verify the prognostic value of the
signature through the P-value.

Establishment and validation of the multigene prognostic
signature

The training cohort was used for constructing the
prognostic risk model, and the validation cohort was
used to verify the fit of the model. The risk score
was calculated as follows: risk score =h(t, mRNA) =
ho(t) * exp. (Exp.mRNA; * B; +Exp.mRNA, * B, +
... + Exp.mRNA, * B,). The h(t, mRNA) is the hazard
function determined by a set of covariates (mRNAj,
mRNA,, ..., mRNA,); The hy(t) (always a constant) is
the baseline hazard function; The exp.() is exponential
function; The Exp.mRNA represents the key gene ex-
pression level; the P represents the regression coeffi-
cient calculated by multivariate Cox regression.
Patients were then stratified into high- and low-risk
groups by risk score. We used the Kaplan—Meier sur-
vival analysis with log-rank test and tROC analysis to
validate the multigene prognostic signature.

Construction and validation of a gene prognostic
nomogram

A composite nomogram was constructed based on all
independent prognostic parameters screened using the
above multivariate Cox proportional hazards regression
analysis to predict the probability of 1-, 3-, and 5-y OS.
Then, the predictive accuracy of the nomogram was
assessed by employing the timeROC package of R soft-
ware. We used a bootstrap method with 1000 resamples
to generate a calibration curve to visualize the perform-
ance of the nomogram with the observed rates of the en-
tire cohort at the corresponding time points.

Evaluation of immune status

The immune status of each sample was quantified using
the single-sample gene-set enrichment analysis (ssGSEA)
with 29 immune-related gene signatures (Supplementary
Table 1). ssGSEA was conducted using R package
“GSVA” [16]. We then analyzed the expression of a pool
of key immune checkpoint molecules (CD274, PDCD]1,
CTLA4, LAG3, HAVCR?2, TIGIT, CD27, CD40, CD70,
TNEFRSF14, CD276, VICN]1, IDO1, PDCD1LG2, CD86,
and ICOS) between the low- and high-risk groups.

Gene set enrichment analysis (GSEA)

As for the ultimate prognosis-related genes used, we
performed the GSEA to identify potential biological
pathways. The entire cohort of 529 EC samples was
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divided into two groups based on the risk group analysis.
Using the DESeq2 R package [17], we compared the dif-
ferentially expressed genes (DEGs) between the low- and
high-risk groups, and obtained an expression matrix of
8320 genes (FDR <0.05), sorted by fold change. GSEA
(v4.1, http://software.broadinstitute.org/gsea/) was then
performed using the JAVA 8.0 platform. The
c5.bp.v7.1.symbols.gmt-annotated gene set obtained
from the MSigDB was chosen as the reference set to cal-
culate the enrichment score (ES), which estimated
whether genes from the previously defined gene sets
were enriched in the high-/low-risk groups. The num-
ber of permutations was set to 1000. Gene sets with less
than 15 genes or more than 500 genes were excluded. A
gene set was considered as an enriched group when the
normalized P value was < 0.05 and FDR was < 0.25.

Gene set variation analysis (GSVA)

Pathway analyses were performed on the 50 hallmark path-
ways described in h.all.v7.2.symbols_hallmarks.gmt of the
molecular signature database (MSigDB); they were exported
using the R package “GSEA”. Next, to assign pathway activity
estimates to the samples, we performed the GSVA using the
standard settings of the R package “GSVA” [16]. Then, we
compared the differences in pathway activity between the
two groups. A pathway was considered significant when the
normalized, adjusted P value was <0.05 and the absolute t
value was > 3.27.

Stemness analysis

The stemness signature was exported from the R pack-
age “scCancer.” We then defined the stemness score as
the Spearman correlation coefficient between stemness
signature and sample expression.

Mutation analysis

The WES data of TNBC patients were obtained from
TCGA. The mutation data of low- and high-risk groups
were analyzed using the R package “maftools” [18]. Som-
atic mutation sites were filtered under the following con-
ditions: (i) allele frequency > 5%; (ii) sequencing depth >
9; (iii) reads supporting the alternate allele > 2.

Statistical analysis

Tumor samples were randomly stratified into two
groups using the “sample” function of R software. The
heatmap of prognostic genes was plotted using the
“pheatmap” R package with zero-mean normalization.
Two groups of boxplots were analyzed using Wilcoxon
test. Accordingly, Kaplan—Meier curves, P-values, and
HRs with 95% confidence intervals (CIs) were generated
using log-rank tests and univariate Cox proportional
hazards regression. All analytical methods above were
performed using R software version 4.0.2. All statistical
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tests were two-sided. Results with P < 0.05 were consid-
ered statistically significant.

Results

Analysis of immune cell subsets of EC using ESTIMATE
and CIBERSORT

The analysis of cellular characteristics showed that
tumor-related macrophages were the most abundant
TME-infiltrating cells, followed by CD8" T-cells. We
noted that the numbers of MO and M1 macrophages
were low in normal tissues, but high in cancer tis-
sues (Fig. 2a, c¢). We also observed that the levels of
activated macrophages MO and CD8" T-cells de-
creased with EC stage, whereas M1 and M2 macro-
phages increased with EC stage (Supplementary
Fig. 1). The correlation heatmap revealed that CD4"
T-cells and MO macrophages were negatively corre-
lated with resting memory CD8" T-cells, activated
mast cells and MO macrophages were negatively cor-
related with resting mast cells, and CD8" T-cells
were positively correlated with CD4" T-cells (Fig. 2b).
Similarly, the obtained boxplot showed an increase
in follicular helper T-cells, T-regulatory cells (Tregs),
and MO and M1 macrophages in cancer tissues com-
pared with those in normal tissues. In contrast, we
found that naive B-cells, CD4 memory resting T-
cells, gamma delta T-cells, activated NK cells, and
mast cells showed high abundance in normal tissues,
but low abundance in tumor tissues (Fig. 2c). The
tSNE plot of 22 immune signatures showed an in-
creased number of MO macrophages in tumor tissues
compared with that in normal tissues (Fig. 2d).

Construction of weighted co-expression network and
identification of gene modules

We chose a threshold value of 7 for the WGCNA,
which had the lowest power of the scale-free topo-
logical fit index of 0.85 (Fig. 3a). After merging simi-
lar clusters, we identified 21 modules that contained
groups of genes with similar patterns of connection
strengths with other genes (Fig. 3b, c). Finally, we
determined the correlation between these modules
and traits (Fig. 3d). A significant association was
found between the salmon, red, royal blue, and pur-
ple modules and stromal cell, immune cell, and ES-
TIMATE scores. Evaluating the correlation between
GS and MM is key in measuring the quality of the
construction of gene modules. After correlating the
modules with the ImmuneScore, the correlation be-
tween GS and MM in the four modules was ob-
served to reach 0.39, 0.99, 0.9, and 0.22 (Fig. 3e).
Thus, we set more stringent screening conditions,
namely GS correlation >0.2 and MM correlation >
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0.8, and finally selected 107 key genes for the down-
stream analyses.

GO and KEGG functional enrichment analyses

Four hundred and thirty-four GO terms and 37 KEGG path-
ways were indicated in 107 key genes. The KEGG pathway
analysis showed that the top 15 significantly enriched path-
ways were related to hematopoietic cell lineage, phagosome
pathways, and the human T-cell leukemia virus 1 infection
pathway (Supplementary Fig. 2a). The top five GO terms of
each subclass were found to be mainly related to immune ac-
tivation, such as T-cell activation and proliferation (Supple-
mentary Fig. 2b).

PPI network of key genes

To better understand the interplay among the key genes,
we constructed a PPI network, which revealed that all
key genes were densely interconnected. The PPI network
of the top 20 key genes sorted by degree revealed several
gene interactions (Supplementary Fig. 3a). The biological
process analysis of the key genes is shown in Supple-
mentary Fig. 3b.

Establishment of a prognostic risk model of the four
immune-related genes

The univariate Cox regression analysis of the training
group showed that 58 immune-related genes were found
to be associated with the OS of patients (P < 0.05; Fig. 4a).
To verify the reliability of the model, we selected the top
four immune-related genes with the highest IncNodepur-
ity using the random forest algorithm (Fig. 4b), with its
coefficient in multivariate Cox regression as follows:
-0.08485 (LPXN), - 0.18955 (TRBC2), - 0.14632 (TRAC),
and 0.13717 (ARHGAP30). We noted significant differ-
ences between the high- and low-risk groups. Addition-
ally, up on optimization of the expression median for
analysis of the four immune-related genes based on the
selected cut-off, we found that the low expression of
TRBC2, LPXN, TRAC, and ARHGAP30 was associated a
with poor prognosis (Fig. 4c). We then calculated the risk
score for each patient, with 1 as the cut-off point, and di-
vided the patients into the high-risk (risk score>1, n=
255) and low-risk (n=274) groups (Fig. 4d); the expres-
sion heatmap of these four genes in the two groups is
shown in Fig. 4e. Finally, 100 stratified samplings (n = 395)
were performed on all patients to verify the prognostic
performance of the four genes and the model. The results
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show that the performance of the four genes and the
model is good (Supplementary Fig. 4).

Prognostic analysis of the four immune-related genes
classifier and construction of the nomogram prognostic
model

The Kaplan—Meier analysis of the OS showed that the
high-risk group in the training cohort was associated
with poor OS (P =0.0026), whereas the OS rate of high-
risk patients in the validation cohort was significantly
lower than that of low-risk patients (P =0.038) (Fig. 5a).
As shown in Fig. 5b, time-dependent receiver operating
characteristic (ROC) analysis revealed that the area
under the curve (AUC) for 1-, 3-, and 5-y OS in the

training cohort was 0.687, 0.699, and 0.76, respectively.
The predictive value of the four immune-related gene
classifiers was confirmed in the validation cohort, which
showed that the AUCs for 1-, 3-, and 5-y OS in the val-
idation cohort were 0.445, 0.606, and 0.679, respectively.
To establish a more reliable predictive method for clin-
ical practice, we combined the two cohorts (# = 453) and
constructed a compound nomogram. We performed
univariate and multivariate Cox proportional hazards re-
gression analyses on the relationship between clinical
characteristic variables and OS (Supplementary Table 2).
Meanwhile, by drawing the ROC curve, we found that
risk score has a better predictive ability than other clin-
ical factors for 5-y OS. The AUC of ROC increased after
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6000

combining the risk score with other clinical factors
(Fig. 5c), which suggested that the risk score may be an
independent risk factor for patients. We used the 10
genes identified in another published article to build a
model for the entire set [19]. The 5-year AUC value of
the 10 genes model is lower than that of our model. As
shown in Fig. 5d, we employed these variables to analyze
the survival probability of patients at 1, 3, and 5 y. To
verify the predictive value of the nomogram, we used C-
statistics to analyze the generated nomogram model.
The C-index of the nomogram was 0.818 (95% CI,
0.865-0.77). In addition, the calibration plot generated
for patients with a 1-, 3-, and 5-y OS prediction demon-
strated that the predicted outcome of the nomogram
showed a good agreement with the actual outcome
(Fig. 5e). Finally, we used the online website GEPIA2 to

analyze the overall prognosis of four immune-related
genes in endemic cancer (Supplementary Fig. 5).

Tumor microenvironment and immune status

To understand the immunological evaluation value of
the model, we performed immunological analysis be-
tween the high- and low- risk groups. The ssGSEA ana-
lysis of the immune status of patients showed that type I
IEN response was not significantly different between the
groups. However, the scores of other immune cells, im-
mune function, and immune pathway gene set were sig-
nificantly higher in the low-risk group than in the high-
risk group, indicating that the immune status of the low-
risk group was higher than that of the high-risk group
(Fig. 6a, Supplementary Fig. 6a). In addition, we compare
the immune infiltration results of CIBERSORT analysis
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between the groups (Fig. 6b). The results show that the
infiltration of T cells CD8, T cells follicular helper, T
cells regulatory (Tregs), T cells gamma delta, and macro-
phages M1 in the low-risk group was significantly higher
than that in the high-risk group (Supplementary Fig. 6b).
The results of the ESTIMATE analysis showed that the
immune score, stromal score, and ESTIMATE score of
the low-risk group were significantly higher than those
of the high-risk group. Furthermore, the tumor purity
was significantly lower than that of the high-risk group,
indicating that the degree of immune infiltration in the
low-risk group was higher than that in the high-risk
group (Fig. 6c). The checkpoint score based on the
ssGSEA showed that the low-risk group was more

suitable for immunotherapy than the high-risk group.
We analyzed the clinical common immune checkpoint
expression, tumor mutation burden (TMB), and mutant-
allele tumor heterogeneity (MATH) of patients in the
two groups, respectively, as references for the evaluation
of clinical immunotherapy. The expression of immune
checkpoints except CD276, VICNI1, and TMB were
higher in the low-risk group than in the high-risk group,
and MATH was significantly lower in the low-risk group
(Fig. 6d, e, and f). These results indicated that the gene
model has a good ability for immune evaluation, and the
low-risk group has higher immune infiltration and im-
mune status, which may result in better efficacy of
immunotherapy.
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Enrichment analysis, stemness analysis, and mutation
profile

We performed the GSEA to identify potential biological
processes in the four immune-related prognostic gene
model. Our results revealed that the pathways of T-cell
activation, T-cell proliferation, activation of immune re-
sponse, and alpha beta T-cell activation were enriched in
low-risk patients. The details are shown in Fig. 7a. We
also generated a heatmap of the transcriptional expres-
sion profiles of the 100 DEGs (Supplementary Fig. 7). In
addition, Supplementary Table 3 shows the enrichment
score and statistical significance of each pathway. The
hallmark pathway enrichment results showed that the
top six hallmark pathways in the low-risk group were all
immune-related (Fig. 7b).

Stemness is one of the factors that determine the ma-
lignancy of a tumor. In the analysis of stemness, we
found that the low-risk group had lower stemness than
the high-risk group (Fig. 7c). This might be one of the
reasons for the better prognosis in the low-risk group. In
addition, we compared the distribution of histotype be-
tween two groups, and the results showed that there
were significantly more type II patients in the high-risk
group than in the low-risk group (Chi-square test: p-
value = 9.194e-05; Fisher exact test: p-value = 6.936e-05).

This may also be one of the reasons for the poor prog-
nosis of the high-risk group. For further research on the
potential mechanism of EC in the different risk groups,
we analyzed the somatic mutation data of the two
groups of patients and showed the mutation profile
(Fig. 7d). There were some differences in the top 20
genes between the groups. The top 10 genes of mutation
frequency in the high-risk group were PTEN (46%),
PIK3CA (45%), TP53 (45%), ARID1A (35%), PIK3R1
(27%), KMT2D (23%), CTNNB1 (21%), ZFHX3 (19%),
CHD4 (18%), and FBXW7 (18%). The top 10 genes of
mutation frequency in the low-risk group were PTEN
(67%), PIK3CA (51%), ARID1A (50%), PIK3R1 (32%),
CTCE (31%), KMT2D (30%), ZFHX3 (28%), FAT4
(28%), FAT1 (27%), TP53 (27%), CTNNBI1 (26%), and
LRP1B (25%). The Fisher exact test on the gene muta-
tion frequency of the two groups revealed that there
were differences among these 20 genes (adjusted P <
0.05) and that TP53 had a high mutation frequency in
the high-risk group. On the contrary, some genes had a
high mutation frequency in the low-risk group, such as
PTEN, FAT1, CTCF, ARID1A, and LRP1B. These results
indicate that our gene model has good performance and
could be considered as a candidate factor for clinical
indicators.
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Discussion

The incidence of EC has been increasing annually, ranking it
the first among gynecological malignancies in developed na-
tions [20, 21]. The treatment options for EC include surgery,
radiotherapy and chemotherapy, hormone therapy, and tar-
geted therapy [22, 23]. However, treatment efficacy has been
reported to be reduced in patients with recurrent or specific
pathological types of EC [24]. Abundant infiltrating immune
cells and cytokines, which can stimulate endogenous antitu-
mor immune responses, have been typically observed in EC
tissues, indicating that the immune microenvironment can
influence the prognostic survival of patients with EC [25].

In this study, we performed TCGA data mining to re-
veal correlations between the infiltration pattern of im-
mune cells into the TME and the clinical characteristics
of patients with EC. Our results showed that a large
number of immune cells infiltrated the interstitium of
EC, among which MO macrophages, followed by CD8"
T-cells, were found to be the most common immune
cells. These cells are known to be important regulators
of the TME, playing an important role in the occurrence,
progression, and prognosis of EC. Interestingly, the pro-
portion of MO macrophages in tumor and normal tissues
was significantly different (P<0.001). However, as the

tumor progressed, the proportion of MO macrophages
gradually decreased, whereas that of M2 macrophages
gradually increased, indicating that TME signals emitted
by tumor or mesenchymal cells can polarize undifferen-
tiated macrophages into M2 macrophages (tumor-asso-
ciated macrophages, TAMs) [26, 27]. In particular,
TAMs are known to pass through multiple signals and
promote the occurrence and development of tumors,
which is an important factor implicated in the poor
prognosis of EC [28].

The PPI analysis revealed that the top 20 hub genes in
the EC microenvironment were related to integrin, im-
mune signaling adapter, and leukocyte surface antigen
pathways. We found that 16 of the 20 hub genes were
associated with patient survival (P<0.05). TYROBP
(transmembrane immune signaling adapter TYROBP),
which was the second highest interconnected node in
the PPI network revealed to be negatively associated
with OS, was found to be upregulated in EC tumor tis-
sues. TYROBP is known to be tyrosine-phosphorylated
in the ITAM domain following ligand binding by the as-
sociated receptors, leading to the activation of additional
tyrosine kinases and subsequent cell activation [29]. The
intersected genes screened out among key genes and
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prognosis-related genes in the training cohort using uni-
variate Cox regression methods were used for random
forest algorithm to identify the four genes (TRAC,
TRBC2, LPXN, and ARHGAP30) significantly associated
with the OS of patients with EC. Both TRAC and TRBC2
have been reported to express the alpha and beta chains
of the T-cell receptor [30-33]. The alpha and beta T-cell
receptors are specific antigen receptors that are essential
for the immune response and are present on the surface
of T-lymphocytes for the recognition of peptide-major
histocompatibility complexes (MHCs) displayed by
antigen-presenting cells (APCs). In addition, we analyzed
these four genes through online websites to explore the
performance of these genes in other cancers. These
genes have been found to have good prognostic evalu-
ation capabilities in endemic cancer, such as head and
neck squamous cell carcinoma, skin cutaneous melan-
oma, thymoma, breast invasive carcinoma, etc. This also
shows that our screening results are reliable. After iden-
tifying these four prognostic genes, we developed a four-
gene prognostic signature and investigated its prognostic
value in patients with EC. In the application of the
model, patients with a risk score great than 1 were con-
sidered to be at high risk. Patients in the high-risk group
showed a significantly worse prognosis than those in the
low-risk group. The AUC value of the prognostic model
(AUC=0.774) was greater than that of stage (AUC=
0.731), grade (AUC=0.659), tumor invasion percent
(AUC=0.627) and age (AUC=0.593). This indicates
that the prognostic model is more accurate than the
commonly used clinical prognostic indicators. We then
built a nomogram incorporating the risk score, tumor
invasion percentage, age, AJCC stage, and grade to
visualize the prognosis of patients with EC. This can be
used to predict the individual 1-, 3-, and 5-y OS prob-
ability specifically according to the risk score and other
conventional clinical prognostic parameters; therefore,
our prognostic model may help clinicians decide on bet-
ter EC treatments.

TME plays an important role in tumor development
[34, 35]. Therefore, the study of the molecular compos-
ition and function of tumor microenvironment is of
great importance for the assessment of the progression
and immune response of EC. Immune score and stromal
score were obtained through the ESTIMATE analysis,
and the ESTIMATE score and tumor purity were pre-
dicted based on these two scores. The results showed
that immune cell infiltration was higher in the low-risk
group than in the high-risk group. The results of the
CIBERSORT analysis indicate that the infiltration of T
cells CD8, T cells follicular helper, T cells regulatory
(Tregs), T cells gamma delta, and macrophages M1 in
the low-risk group was significantly higher than that in
the high-risk group. Through the ssGSEA, we analyzed
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the enrichment of genes of immune cells, immune func-
tion, and immune pathway activity in each sample. The
results of the ssGSEA revealed that the immune activity
of the low-risk groups was higher than that of the high-
risk group. Moreover, the GSEA and hallmark pathway
analysis showed that immune-related pathways, includ-
ing the activation of the immune response and molecu-
lar signals induced by it were enriched in the low-risk
group. These results indicate that the immune ability of
patients was stronger in the low-risk group than in the
high-risk group, indicating a better prognosis. Hence, by
exploring the response of the immune checkpoint inhib-
itors, we found that the expression of 14 immune check-
points and TMB were significantly higher in the low-risk
group than in the high-risk group, and the MATH of
the low-risk group was lower than that of the high-risk
group. Several recent studies have demonstrated that
TMB can be used as a biomarker to predict patient re-
sponse to immune checkpoint inhibitors. Tumor hetero-
geneity is also closely related to tumors, and compared
with factors such as TMB, tumor heterogeneity has a
greater impact on the effect of immunotherapy [36, 37].
According to these findings, we speculate that EC pa-
tients with a low-risk score might have a better response
to these checkpoint inhibitors.

Nevertheless, there were some limitations associated with
our study. First, the present study was completely based on
data obtained from TCGA database. Thus, the results should
be validated using external databases and additional clinical-
based experiments. Second, the predictive value of the
immune-related prognostic model should be experimentally
tested using a large number of EC samples. Third, our study
only focused on large-scale mRNA sequencing data from
TCGA platform. However, other types of data, such as copy
number variations, and DNA methylation, are also provided
in the public dataset. If possible, these four novel biomarkers
should be further analyzed to determine whether their ex-
pression levels are associated with the mutation types men-
tioned above.

Conclusions

In the present study, by integrating transcriptome and
clinical data, we identified a novel prognostic model for
EC. Combined with immunological and genomic ana-
lysis, we demonstrate that this novel immune gene
model could potentially be used in clinical practice for
assessing individual risk of death and potentially guide
treatment strategies.
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