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Abstract

Osteosarcoma predominantly affects adolescents and young adults and is characterized

as a malignant bone tumor. In recent decades, substantial advancements have been

achieved in both diagnosing and treating osteosarcoma. Resulting in enhanced survival

rates. Despite these advancements, the intricate relationship between ferroptosis and

cuproptosis genes in osteosarcoma remains inadequately understood. Leveraging TAR-

GET and GEO datasets, we conducted Cox regression analysis to select prognostic genes

from a cohort of 71 candidates. Subsequently, a novel prognostic model was engineered

using the LASSO algorithm. Kaplan–Meier analysis demonstrated that patients stratified

as low risk had a substantially better prognosis compared with their high-risk counter-

parts. The model's validity was corroborated by the area under the receiver operating

characteristic (ROC) curve. Additionally, we ascertained independent prognostic indica-

tors, including clinical presentation, metastatic status, and risk scores, and crafted a clini-

cal scoring system via nomograms. The tumor immune microenvironment was appraised

through ESTIMATE, CIBERSORT, and single-sample gene set enrichment analysis. Gene

expression within the model was authenticated through PCR validation. The prognostic

model, refined by Cox regression and the LASSO algorithm, comprised two risk genes.

Kaplan–Meier curves confirmed a significantly improved prognosis for the low-risk group

in contrast to those identified as high-risk. For the training set, the ROC area under the

curve (AUC) values stood at 0.636, 0.695, and 0.729 for the 1-, 3-, and 5-year check-

points, respectively. Although validation set AUCs were 0.738, 0.668, and 0.596, respec-

tively. Immune microenvironmental analysis indicated potential immune deficiencies in

high-risk patients. Additionally, sensitivity to three small molecule drugs was investigated

in the high-risk cohort, informing potential immunotherapeutic strategies for osteosar-

coma. PCR analysis showed increased mRNA levels of the genes FDX1 and SQLE in

osteosarcoma tissues. This study elucidates the interaction of ferroptosis and cupropto-

sis genes in osteosarcoma and paves the way for more targeted immunotherapy.
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1 | INTRODUCTION

Osteosarcoma, the foremost primary malignant tumor of bone, is

characterized by a propensity for local invasion and metastasis.

Despite significant progress in surgical and chemotherapeutic treat-

ments, the outlook for patients with metastatic or recurrent osteosar-

coma is still poor. Immunotherapy has become a leading approach in

combatting various malignancies, illuminating the role of the immune

system in osteosarcoma and enhancing immunotherapy's effective-

ness through the identification of biomarkers, thus broadening its

applicability. It incorporates immune modulators, checkpoint inhibi-

tors, and combination therapies, significantly reducing treatment-

related side effects, improving efficacy, and improving quality of life.1

The field is now increasingly focused on identifying novel biological

targets for future therapies. Ferroptosis, recently identified as a dis-

tinct form of cell death, plays a crucial role in a multitude of physiolog-

ical and pathological processes, including cancers, with major

regulators such as GPX4 and Nrf2 being crucial in tumor dynamics.2

The Nrf2/xCT/GPX4 axis is known to counteract osteosarcoma.3 In

2022, Todd R. Golub's team introduced cuproptosis, a unique pro-

grammed cell death pathway distinct from classical apoptotic and

necrotic pathways and driven by protein–lipid interactions in mito-

chondria due to copper toxicity. This toxicity disrupts the TCA cycle,

resulting in detrimental protein aggregations, particularly affecting the

pyruvate dehydrogenase complex, and ultimately leading to cell

death.4–9 Research shows that osteosarcoma tumors require exten-

sive energy, likely derived from glycolysis and the TCA cycle.10 This

study delves deeper into the role of copper in mitochondrial stability

and its broader implications in cell biology,11,12 providing new angles

for using copper-mediated mechanisms in cancer treatment. By using

comprehensive tumor tissue sequencing data, we have developed an

osteosarcoma prognosis model based on the interaction between fer-

roptosis and cuproptosis pathways. This model is poised to enhance

clinical prognosis and aid in molecular drug development.13,14 Our

study extends beyond existing models such as those based on apopto-

sis and RNA methylation-related genes by combining genes implicated

in both ferroptosis and cuproptosis, creating an innovative prognostic

tool with the potential to improve clinical decisions. The model also

evaluates the relationship between prognosis and immune response,

potentially leading to more effective targeted therapies for osteosar-

coma.15,16 In summary, forging an effective osteosarcoma prognostic

model constitutes a vital advance in the amelioration of diagnosis,

prognosis, and therapy for this aggressive cancer.

2 | MATERIALS AND METHODS

2.1 | Collection of osteosarcoma datasets

The osteosarcoma dataset combines data from two principal sources:

the TARGET and the GEO database. The TARGET database contains

88 tumor samples, GSE21257 provides 53 samples, and GSE16102

includes 57 samples following the removal of three human embryonic

cell lines and six normal tissue samples. To maintain uniformity, the

data from various platforms underwent normalization. Pertinent litera-

ture has identified 60 genes connected to ferroptosis and 11 genes

related to cuproptosis.17,18 The TARGET database serves as the train-

ing set, with GSE21257 and GSE16102 acting as validation sets.

2.2 | Expression patterns and interactions of co-
genes

To characterize the expression patterns and interactions among co-

expressed genes, we employed a suite of graphing packages such as

“igraph,” “psych,” “reshape2,” and “RcolorBrewer.” Selection of these

packages was based on their proven capacity for visually rendering

complex data and ensuring its coherent representation.

2.3 | Construction of the signature using the
LASSO regression model

We performed a thorough analysis of 71 genes implicated in ferropto-

sis and cuproptosis using univariate Cox regression to identify those

with a p-value below .001 for inclusion in a LASSO regression model.

The model stratified the samples into high-risk and low-risk categories

based on their respective risk coefficients. Survival curves were then

generated for each category using the “survival” package, with the

model's precision evaluated by receiver operating characteristic (ROC)

curves derived from the ‘survivalROC’ package. Additionally, expres-
sion profiles of the prognostic genes in both risk categories were vali-

dated via univariate and multivariate Cox regression analyses,

enabling the identification of independent prognostic risk factors. Our

findings shed light on the significance of these genes in ferroptosis

and cuproptosis and their utility as prognostic biomarkers.

2.4 | Nomogram prognostic model construction

We developed a prognostic nomogram utilizing clinical indicators

deemed significant by a multivariate Cox regression analysis, with a p-

value of .001 or less indicative of statistical significance. The model's

performance was assessed using calibration curves and the concor-

dance index (c-index). To confirm the model's predictive accuracy, we

constructed ROC curves for 1-, 3-, and 5-year intervals. Additionally,

Kaplan–Meier survival analysis was conducted on high-risk groups,

confirming statistical significance with a p-value less than .05.

2.5 | Cell infiltration in the tumor
microenvironment

Utilizing gene set enrichment analysis (GSEA), we compared two risk

groups to delineate potential biological functions associated with our

risk scoring framework, employing the c2.cp.kegg.v7.0.symbols.gmt

gene set with 1000 permutations for intergroup comparisons and

without the need for gene name conversion. Utilizing the
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F IGURE 1 Kaplan–Meier curves for the 34 genes in osteosarcoma patients from TARGET database.
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single-sample gene set enrichment analysis (ssGSEA) algorithm, we

quantified the presence of infiltrating immune cells within the tumor

microenvironment for each sample. To assess the variance in immune

cell infiltration between the high-risk and low-risk cohorts, the CIBER-

SORT algorithm was employed. We also leveraged the “estimate”
package to investigate the relationship between the risk score and

multiple factors, such as immune score, ESTIMATE score, stromal

score, and tumor purity, and thereby evaluate their connection with

prognostic indicators. Additionally, we deployed the tumor immune

dysfunction and exclusion (TIDE) algorithm with the objective of pre-

dicting responses to immune checkpoint inhibitors in individual sam-

ples or subtypes, as delineated in previous research.19

2.6 | Small molecule drug screening based on
risk model

The IC50 values are quantified using the ‘pRRophic’ package in

R. Drugs with potential relevance to osteosarcoma are analyzed based

on the median-risk score.

2.7 | Cell culture and gene expression

The human osteoblast cell line hFOB 1.19 and the human osteosar-

coma cell line MG63 were obtained from the CAS cell bank. The

hFOB 1.19 cells were propagated in DMEM/F-12 complete medium

(The number is KGM41500N-500), whereas MG63 cells were grown

in α-MEM complete medium (The number is KGM44892N-500),

with both media supplemented with 10% fetal bovine serum (The

number is KGY008, Sangon Biotech, Inc. Shanghai China, FBS). Cul-

tures were maintained in a controlled environment at 37�C and 5%

CO2. Total RNA was extracted from the cells and osteosarcoma tis-

sue samples using TRIzol reagent (The number is RR047A, Invitro-

gen, Carlsbad, CA, USA), in accordance with the manufacturer's

instructions.

Subsequent to RNA isolation, to synthesize cDNA, one microgram

of total RNA underwent reverse transcription using the RevertAid

First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). Subse-

quently, quantitative real-time PCR (qRT-PCR) was conducted utilizing

SYBR Green Mix (Vazyme, China). The amplification protocol included

an initial denaturation at 95�C for 1 min followed by 35 cycles of

denaturation at 95�C for 90 s, annealing at 60�C for 30 s, and exten-

sion at 72�C for 30 ss, with a final extension step at 72�C for 10 min.

Relative gene expression levels were quantified using the 2^-ΔΔCt

method, with GAPDH serving as a reference gene. The primer

sequences used for qRT-PCR are as follows: GAPDH forward

50-CTGAGTACGTCGTGGAGTCC-30 and reverse 50-GTCTTCTGGGT

GGCAGTGAT-30; SQLE forward 50-GGCCTGCCTTTCATTGGCTT-

30 and reverse 50-TTCCTTTTCTGCGCCTCCTG-30; FDX1 forward 50-

TCTGCTGTCCTCGGCGG-30 and reverse 50-GGTTCCCTCACATG-

CACCAAA-30 (The primer sequence designed by Beijing Bioss, China).

F IGURE 2 A network of
correlations including FRGs and
CUGs in the TARGET cohort.
(*p < .05; **p < .01; ***p < .001).
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2.8 | Statistical analysis

All statistical analyses were conducted using R version 3.6.1. Experi-

mental results are presented as mean values with their respective

standard deviations. Statistical significance was established using one-

way ANOVA. Survival differences between groups were compared

using Kaplan–Meier curves and log-rank tests, with significance set at

a two-sided p-value of less than .05. Each experiment was performed

a minimum of three times.

3 | RESULTS

3.1 | Expression patterns of ferroptosis and
cuproptosis associated genes in osteosarcoma

To elucidate the prognostic significance of ferroptosis and copper-

induced cell death-related genes in osteosarcoma, we conducted a

comprehensive analysis of 71 pertinent genes and their correlation

with patient survival outcomes (refer to Figure 1). Moreover, we have

F IGURE 3 Prognostic relevance and construction of the risk signature of FRGs and CUGs in osteosarcoma (OS). (A) The prognostic analyses
for nine genes using univariate Cox regression model. (B, C) LASSO coefficient profiles of the two genes. (D) The Kaplan–Meier analysis showed
that patients in the low-risk group presented better osteosarcoma than those in the high-risk group for training set. (E) Expression patterns of two
selected prognostic genes in high-and low-risk groups for training set. (F, G) The training set of forrest plot of the independent prognostic
factors in OS.
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constructed a network diagram (refer to Figure 2) that delineates

the interactions and potential prognostic relevance of these genes.

The analysis uncovered that 34 regulator genes demonstrated a sig-

nificant association with survival outcomes. Noteworthily, an elevated

expression of certain genes, including ACSF2, ACSL3, DPP4,

FANCD2, FTH1, G6PD, GPX4, GSS, HMOX1, HSBP1, IREB2, LIAS,

LPCAT3, MTF1, NFS1, NOX1, NQO1, PEBP1, PGD, SAT1, and ZEB1,

was linked to improved prognosis. Conversely, lower expression levels

of AIFM2, AKR1C2, CBS, CDKN2A, CISD1, FADS2, FDFT1, FDX1,

GLS, MT1G, PTGS2, SQLE, and TFRC were associated with a more

favorable prognosis compared to their higher counterparts.

3.2 | Construction of a prognostic model based on
co-expressed genes

A univariate Cox regression analysis was conducted on 71 genes,

resulting in the identification of nine significant genes: FDX1

(p = .000597), ALOX12 (p = .007014), CBS (p = .00191423), SQLE

(p = .00041), G6PD (p = .00968), FADS2 (p = .0112), PGD

(p = .01182), FDFT1 (p = .0235), and HSBP1 (p = .031) (Figure 3A).

Remarkably, both FDX1 and SQLE demonstrated profound signifi-

cance (p < .001) and were consequently incorporated into the LASSO

regression algorithm to construct a two-gene prognostic risk model

(Figure 3B,C). Using the median risk score as a cutoff, subjects were

dichotomized into high-risk and low-risk groups. Noteworthy is the

significantly enhanced survival observed in the low-risk group com-

pared with the high-risk group (Figure 3D). In the training cohort, the

association between gene expression risk scores and two prognostic

indicators was corroborated and visualized through heatmaps

(Figure 3E). Furthermore, both univariate and multivariate analyses

confirmed that metastasis and the risk score are independent prog-

nostic factors for osteosarcoma (Figure 3F,G).

3.3 | Validation of risk models

The prognostic risk models were assessed using the area under the

curve (AUC) of the ROC curves at 1-, 3-, and 5-year intervals, as

derived from the training set data. The resultant AUC values were

0.636, 0.695, and 0.729, respectively (Figure 4A–C). Similarly, the anal-

ysis of the validation set yielded AUC values of 0.738 for 1-year, 0.668

F IGURE 4 Validation of model for predicting the prognosis of osteosarcoma (OS) patients. (A, B, C) The training set of the receiver operating
characteristic (ROC) curve for evaluating the prediction efficiency of the prognostic signature. (D, E, F) The testing set of the ROC curve for
evaluating the prediction efficiency of the prognostic signature. (G) Expression patterns of two selected prognostic genes in high-and low-risk
groups for testing set. (H) The Kaplan–Meier analysis showed that patients in the low-risk group presented better OS than those in the high-risk
group for testing set. (I) mRNA expression of FDX1. (J) mRNA expression of SQLE.

6 JI ET AL.



TABLE 1 C-index for verifying the validity of Norman diagram.

C-index Dxy S.D. n

0.8064126 1.6128252 0.9303953 �84.0000000

Uncensored Relevant pairs Concordant Uncertain

�28.0000000 �3305.0000000 �639.0000000 �3833.0000000

F IGURE 6 Gene set enrichment analysis analysis between high-risk and low-risk groups.

F IGURE 5 Construction and validation of a nomogram for predicting the prognosis of osteosarcoma (OS) patients. (A) Nomogram for
predicting the 1-, 3-, and 5-years OS of osteosarcoma patients in the TARGET-OS cohort. (B, C, D) The receiver operating characteristic (ROC)
curves of the nomograms compared for 1-, 3-, and 5-years OS in osteosarcoma patients, respectively. (E, F, G) Calibration curves for validating
the established nomogram. (H) Kaplan–Meier survival curves stratified according to risk scores. (I) Kaplan–Meier survival curves stratified
according to metastasis.

JI ET AL. 7



for 3-year, and 0.596 for 5-year ROC curves (Figure 4D–F). The expres-

sion profiles of FDX1 and SQLE in the two identified risk groups corre-

sponded with the patterns observed in the training set (Figure 4G).

Importantly, survival rates in the low-risk group of the validation set

consistently exceeded those in the high-risk group (Figure 4H). The

hFOB 1.19 and MG-63 cells were utilized to validate the mRNA

expression of SQLE and FDX1 in osteosarcoma (OS). The mRNA levels

of SQLE and FDX1 in these OS cell lines were elevated in the hFOB

1.19 cell line (Figure 4I,J), aligning with our previous observations.

3.4 | Construction and verification of a
nomogram model

We developed a nomogram utilizing independent prognostic factors for

predicting overall survival (OS) at 1-, 3-, and 5-year intervals, as shown

in Figure 5A. The model's predictive performance was evaluated using

the concordance index (c-index) and calibration curves (Table 1). The

ROC curves depicted AUC values of 0.907, 0.810, and 0.829 for 1-, 3-,

and 5-year overall survival correspondingly, as illustrated in

Figure 5B–D, indicating high predictive accuracy. Calibration plots

further confirmed the model's reliability (Figure 5E–G). Survival analysis

demonstrated a statistically significant difference in early versus late

survival rates (p < .001). Additionally, the survival analysis indicated

that patients in the low-risk cohort experienced significantly better

overall survival than those in the high-risk cohort (p < .05; Figure 5H,I).

3.5 | Expression pattern of immune cell infiltration
based on risk model

To clarify the role of the proposed model, we conducted GSEA to

explore its association with potential signaling pathways. The results

demonstrated connections between the risk model and various immune

pathways, notably PRIMARY IMMUNODEFICIENCY, as depicted in

Figure 6. We further assessed the relationship between immune cell

infiltration and risk score through ssGSEA, shown in Figure 7A. The

high-risk group exhibited marked reductions in expression levels across

multiple immune cells, including activated B cells, CD56bright natural

killer cells, immature B cells, myeloid-derived suppressor cells, macro-

phages, mast cells, monocytes, natural killer cells, neutrophils, regula-

tory T cells, T follicular helper cells, and type 1 T helper cells, with

F IGURE 7 Prognosis and TME characteristics in two clusters for osteosarcoma (OS) patients. (A) Box plot for the TME cells in distinct risk
groups derived from OS patients based on the single-sample gene set enrichment analysis. The asterisks represented the statistical p value
(*p < .05; **p < .01; ***p < .001). (B, C, D, E) Immune, stromal, ESTIMATE and TumorPurity scores within the low- and high-risk groups. (F, G)
Expression of two key immune cells in two groups. (H) Summary of the immune cells' abundance for different risk groups.
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statistical significance indicated by p < .05; p < .01; and **p < .001.

These findings suggest the substantial influence of immune cell concen-

tration and infiltration on osteosarcoma prognosis. Comparative

analysis using the ESTIMATE algorithm indicated that the high-risk

group possessed lower total, immune, and stromal scores, yet exhibited

increased tumor purity, as shown in Figure 7B–E. Additionally,

F IGURE 8 Sensitivity of immunotherapy and immune escape in high and low wind groups. (A) Differences between the two groups of eight
immune checkpoints. (B, C, D) Comparison of tumor immune dysfunction and exclusion in two risk groups.

F IGURE 9 Predicting the responsiveness of osteosarcoma to chemotherapy based on risk model. (A) Bortezomib sensitivity. (B) Dasatinib
sensitivity. (C) DMOG sensitivity.

JI ET AL. 9



CIBERSORT algorithm analysis highlighted significant disparities in

immune cell composition between the higher and lower groups, with a

pronounced depletion in CD4 memory activated T cells and CD8 T cells

in the high-risk group, as detailed in Figure 7F–H.

3.6 | Immune checkpoints and immune evasion
related to risk models

The study evaluated the expression patterns of various genes related

to immune checkpoints. SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1,

CTLA4, LAG3, and PDCD1LG2 are involved. Significant differences

were observed in the expression levels of TIGIT, PDCD1, and

PDCD1LG2 between the two risk groups. The lower group demon-

strated elevated expression of these immune checkpoints, as depicted

in the heatmap (Figure 8A). In stark contrast, the high-risk group

showed increased TIDE scores and dysfunction scores, suggestive of

enhanced immune escape and regulatory imbalances. Furthermore,

the high-risk group presented with a lower MSI score relative to the

low-risk group, implying a reduced presence of immune cells with

antitumorigenic activities in patients with higher risk (Figure 8B–D).

These results underscore the promising therapeutic potential of

immune checkpoint inhibitors in cancer management.

3.7 | Potential drug screening based on risk
models

The study identifies three drugs—bortezomib, dasatinib, and DMOG—

as pertinent to osteosarcoma treatment based on the risk model

depicted in Figure 9A–C. Contrary to the higher cohort, the lower

group demonstrated increased sensitivity to these agents. These

results extend the pharmacological repertoire for osteosarcoma man-

agement; however, additional research is required to fully understand

their mechanisms of action. The statistical significance underpinning

the drug sensitivity analysis is affirmed with a p-value less than .05.

4 | DISCUSSION

The malignancy ranks of osteosarcoma as the most commonly occur-

ring tumor originating in bone tissue, in adolescents and young adults,

noted for its pronounced invasive and metastatic capabilities.20 Cur-

rent treatment modalities for osteosarcoma patients encompass sur-

gery, radiotherapy, chemotherapy, and neoadjuvant chemotherapy.21

Despite these interventions, the overall survival rates are discourag-

ing, especially in advanced disease stages, owing to osteosarcoma's

aggressive nature.22,23 Furthermore, resistance to conventional che-

motherapy compounds the clinical challenge,23 necessitating alterna-

tive treatment approaches, such as promoters of tumor cell apoptosis,

antiangiogenesis drugs, and immunotherapy.24,25 Nevertheless, the

clinical efficacy and the underlying mechanisms of these emerging

therapies remain to be fully elucidated. A thorough understanding of

osteosarcoma's molecular pathology is imperative for the identifica-

tion of critical biomarkers for early diagnosis, targeted treatment, and

prognosis.

Recent interest in the cellular death pathways of ferroptosis and

cuproptosis has surged within tumor research. Since ferroptosis's

introduction in 2012, studies have extensively explored its pathogen-

esis and therapeutic implications, affirming the link between intracel-

lular reactive oxygen species levels and tumor biology.26,27 Research

suggests that ferroptosis-inducing drugs hold promise in counteract-

ing chemotherapy resistance associated with apoptosis.28,29 Likewise,

mounting evidence indicates the significance of copper-induced cyto-

toxicity within tumor growth, immunity, and therapy.4 Despite numer-

ous studies, the combined genetic activity of ferroptosis and

cuproptosis in tumors remains enigmatic, underscoring the need for

in-depth research into these cellular death pathways to inform novel

antitumor strategies.

In our study, we scrutinized the influence of 71 coexpressed

genes on patient survival, identifying 34 regulatory genes significantly

impacting prognosis. Higher gene expression levels were associated

with better outcomes, exemplified by genes such as ACSF2, ACSL3,

and G6PD. Conversely, genes like AIFM2 and AKR1C2 with lower

expression correlated with poorer prognosis. Univariate Cox and

LASSO regression analyses pinpointed two prognostic genes: FDX1

and SQLE. Immune profiling disclosed variations in immune cell popu-

lations between risk groups, with GSEA highlighting the primary

immunodeficiency pathway in the low-risk category. Notably, CD8+ T

cell metabolism's role in anticancer immunity emerged as a critical fac-

tor.30 Further exploration of tumor-associated immune checkpoints

and the risk model is underway, revealing the high expression of

TIGIT, PDCD1, and PDCD1LG2 in the low-risk group. Our findings

suggest that immunotherapy, indicated by TIDE, Dysfunction, and

MSI scores, may yield greater efficacy in these patients. Additionally,

chemotherapy sensitivity, represented by IC50 values for drugs such

as Bortezomib and Dasatinib, underscores potential treatment ave-

nues. Despite intriguing results, this study's limitations include an

incomplete understanding of ferroptosis and cuproptosis in osteosar-

coma and a need for larger datasets to minimize sampling bias. Future

research will delve further into these cellular death mechanisms and

validate findings with more clinical samples.
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