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Abstract

Background and purpose: Creutzfeldt-Jakob disease (CJD) is a transmissible spongiform
encephalopathy characterized by rapid onset and high mortality. Despite considerable
progress in the treatment and diagnosis of CJD, patient prognosis remains poor. Many
studies have found that the immune response is associated with the pathophysiology of
CJD. However, few studies have reported coexpression correlations between genes as-
sociated with CJD and the immune response. This study was undertaken to construct a
network of coexpressed immune- and CJD-related genes that may reveal new biomarkers
and therapeutic targets for CJD.

Methods: Gene expression data from 11 CJD patients and 10 nonneurological controls
were obtained from the Gene Expression Omnibus database. High-confidence protein-
protein interaction (PPl) data were downloaded from the Human Protein Reference
Database, and gene expression data of immune- and CJD-associated genes were down-
loaded from the AmiGol6é6 and DisGeNET databases, respectively. An immune/CJD-
related expression network was constructed based on Pearson correlation coefficients
and PPI networks, and a CJD-directed neighbour coexpression network was extracted,
in which we compared the gene expression patterns and correlations between differ-
ent groups. The samples were classified using CJD-specific modules, and differentially
expressed genes (DEGs) between the CJD and nonneurological controls groups were
identified within the CJD-specific modules. Further functional analysis was performed
using Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis of genes
in each CJD-specific module.

Results: We constructed an immune/CJD-related coexpression gene network compris-
ing 2007 nodes and 5268 edges, with immune-associated genes occupying important
positions in the network. In the CJD-directed neighbour coexpression network, immune-
associated genes exhibited the highest coexpression level with their interacting genes.
Results from Pearson correlation analysis showed that most of the CJD-associated genes
were positively correlated with immune-associated genes. Screening for CJD-specific
modules identified MAPK1, CASP3, APP, MAPT, SNCA, and YWHAH, indicating a close
connection between CJD and the immune response. Analyses of coexpression status and
expression level of CJD-specific genes revealed a very high coexpression pattern for any
two genes, with most genes being DEGs. Finally, KEGG enrichment analyses of all CJD-
specific genes showed that the pathophysiology of CJD is closely related to infection and

the immune response.
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INTRODUCTION

Creutzfeldt-Jakob disease (CJD) is a transmissible central nervous
system (CNS) disease that is fatal. It is characterized by rapid pro-
gressive dementia and focal lesions of the cerebral cortex, basal gan-
glia, and spinal cord. CJD is the most common human prion disease,
with a mortality rate of up to 100% [1]. The main CJD neuropathies
are cavernous changes, neuronal loss, astrocyte proliferation, mi-
croglial activation, and PrP%¢ (protease-resistant isoform of the host-
encoded cellular prion protein (PrPC), named PrpP%9) deposition [2,3].
CJD is a rare disease, with 1-2 cases per million people reported
annually, and an average age of onset of 60.7 years [4]. CJD cases
can be divided into sporadic CJD (sCJD), familial (characterized by
an autosomal dominant mutation in the prion protein [PRNP] gene),
iatrogenic, and variant. Of these, sCJD is the most common form,
accounting for 85% of CJD cases [5]. Although CJD is rare, the lack
of treatments for this disease and its rapid progression to death have
a profound effect on patients and their families, and there is a clear
need to identify therapeutic strategies to combat CJD.

The diagnosis of CJD is one of the most challenging aspects of
this disease, due to its diverse symptoms. Histopathological confir-
mation by brain biopsy is the gold standard for diagnosis. However,
the risks involved in obtaining brain tissue have led to the devel-
opment of a brain-free diagnostic method that combines imaging,
analysis of cerebrospinal fluid (CSF) for biomarkers, and observa-
tion of clinical symptoms. However, discordant studies have led to
controversies about the clinical value of some established surrogate
biomarkers [6]. The identification of additional representative bio-
markers will therefore help to improve the diagnosis and treatment
of CJD.

Most CJD cases feature a large number of activated cell inflam-
matory responses. This inflammatory reaction in the brain, charac-
terized by microglia strongly expressing major histocompatibility
complex Class Il and leukocyte antigen, represents a special form
of the innate immune response [7]. Studies have revealed an in-
crease in expression of pro- and anti-inflammatory cytokines and
immune response mediators in the CSF of CJD patients [8]. In ad-
dition, the nuclear factor kappa B/IxB kinase and Janus kinase/sig-
nal transducer and activator of transcription signalling pathways are
activated in sCJD mice [9]. Furthermore, a recent study found that
prostaglandin-endoperoxide synthase 2 (known as PTGS2 or COX-
2) is involved in prion-induced neuroinflammation and microglial

Conclusions: Our coexpression network analysis revealed a close connection between
CJD- and immune-associated genes, and we identified six CJD-specific modules.
Biological function analysis of CJD-specific module genes revealed that immune re-
sponses are associated with CJD pathophysiology and may provide novel diagnostic and

therapeutic biomarkers for this disease.
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activation in CJD patients [10,11]. It has thus become apparent that
the pathogenesis of CJD includes activation of multiple immune-
related signalling pathways, and investigating the status of immune-
related genes in CJD may contribute to the diagnosis and treatment
of this disease. So far, few studies have reported on the research of
CJD and immune-related gene coexpression.

In this study, we used bioinformatic analysis to construct an
immune/CJD-related coexpression gene network, with the aim of
screening potential biomarkers for the diagnosis and treatment of
CJD. The outcomes of this study help to address the dearth of infor-
mation with respect to immune-related gene expression in CJD, and
lay a theoretical foundation to expand clinical strategies for treating
CJD.

MATERIALS AND METHODS
Data collections

We collected the transcriptome data of frontal cortices in CJD pa-
tients (10 samples) and nonneurological controls (11 samples) from
the Gene Expression Omnibus (GEO) database (accession number:
GSE124571). Moreover, the high-confidence protein-protein in-
teraction (PPI) data were downloaded from the Human Protein
Reference Database (HPRD; http://hprd.org/download) [12]. Next,
we obtained 3279 immune-associated genes in Homo sapiens from
AmiGo16 (http://amigo.geneontology.org/amigo/search/bioentity)
by inputting the keywords "organism," "Homo sapiens," "type," and
"protein" [13]. Furthermore, we downloaded the CJD-associated
genes from the DisGeNET database (https://www.disgenet.org/
search).

Construction of the immune/CJD-related
coexpression network

To analyse the correlation of gene expression between CJD patients
and nonneurological controls, Pearson correlation analysis of gene
expression between any two gene pairs was performed in the R
package "psych" (v1.9.12.31) [14]. Next, the genes with Pearson co-
efficient value > 0.7 and false discovery rate < 0.05 were screened
to construct the initial gene coexpression network. In addition, to
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further observe the coexpression correlation of genes, the initial
gene coexpression network was mapped to the PPl network ob-
tained from the HPRD, and only the common networks were pre-
served to construct an immune/CJD-related coexpression network.
Meanwhile, all genes were divided into four groups—CJD-associated
genes, immune- and CJD-associated genes (the intersection of
CJD-associated genes and immune-associated genes), immune-
associated genes, and other genes—and the number of genes in each
group was determined. Finally, the common networks were visual-

ized via Cytoscape (v3.8.0).

Construction of the CJD-directed neighbour
coexpression network

First, the first neighbour of CJD-associated genes and immune- and
CJD-associated genes, which belong to CJD-related genes, was
selected for the CJD-directed neighbour coexpression network.
Second, correlation between two genes in each group was calcu-
lated to obtain the coexpression correlation coefficients. Based on
the correlation coefficients between two genes, the cumulative dis-
tribution function (CDF) was performed in the four groups to analyse
the gene expression pattern and the correlation of different groups.
In addition, the Wilcoxon rank-sum test was used to compare the
coexpression correlation coefficients between two gene groups.
Furthermore, the CJD-related genes and their interacting genes
were collected to construct the network, and a heatmap was used

show the degree of correlation via the R package "heatmap" [15].

Screening of the CJD-specific modules

To identify the important modules associated with CJD, the CJD-
directed neighbour coexpression network was used as the input file
to perform clustering analysis using the GraphWeb tool. The mod-
ules whose central node is CJD-related genes were used as output
modules. Next, the R package "Consensus ClusterPlus" (v1.52.0)
[16] was used to carry out the synonymous cluster analysis based
on the expression of modules genes, and the parameters were set
to maxK = 8, reps = 1000, and clusterAlg = hc. Moreover, we se-
lected the appropriate K value according to the clustering results
and extracted their expression data in the GSE124571 dataset.
Additionally, the R package "pheatmap" (v1.0.12) was used to draw

the expression heatmap.

Gene expression patterns in CJD-specific modules

To explore the genes' correlation in CJD-specific modules, the
Pearson correlation coefficients between each gene pair in the
module were calculated, and a correlation heatmap was drawn via
the R package "pheatmap." Then, the gene expression patterns be-
tween CJD patients and nonneurological controls in each module

were analysed. That is, the differentially expressed genes (DEGs) in
each module were identified between different samples (CJDs vs.
nonneurological controls) with the threshold of absolute log2 fold-

change > 1 and a p < 0.05 with the R package "limma" [17].

Kyoto Encyclopaedia of Genes and Genomes pathway
enrichment analysis

The enrichment analysis of genes in each module were performed in
the R package "clusterProfiler" (v3.16.0) [18] with the threshold of
p =0.05and g =0.05.

Statistical analysis

All statistical analyses were performed in R (v3.5.2), and p < 0.05
was considered statistically significant. Pearson chi-squared test and

Wilcoxon rank-sum test were employed for comparison of variables.

RESULTS
Immune-associated genes may play a key role in CJD

Many studies have found that the immune response is associated
with the pathophysiology of CJD. Based on the importance of the
immune response in CJD, immune-associated genes were analysed.
A total of 3279 immune-associated genes were identified from the
Amigo database, including KLF2, ARRB2, LGALS7, PRDX2, RABL3,
RAB44, JAK1, BDKRB1, IKBKE, and PHPT1. Similarly, a total of 137
CJD-associated genes were identified from the DisGeNET database,
including PRNP, MSL3P1, SNORA16B, CPED1, and ALDH1A1. Using
these data, we constructed an immune/CJD-related coexpression
network based on the initial gene coexpression and PPl networks,
which is shown in Figure 1a. In the network, the green, orange, red,
and grey nodes represent CJD-associated genes, immune-associated
genes, immune- and CJD-associated genes, and other genes, re-
spectively. The network contained a total of 2007 nodes and 5268
edges. Our analysis of the degree distributions of all genes revealed
that they were scale-free, with an R? value of 0.9946 (Figure 1b).
Furthermore, our network analysis indicated that there were
17 genes in common between the immune- and CJD-associated
gene groups, such as MAPT, SNCA, APP, CASP3, MAPK3, MAPK1, and
TREM2. Twenty CJD-specific genes and 569 immune-specific genes
were identified based on the Venn diagram (Figure 1c). In addition,
we found that the numbers of CJD-associated genes and immune-

and CJD-associated genes were similar to each other, whereas
groups comprising the immune-associated and other genes were
much higher (Figure 1d). The top five genes with the highest degree
were FYN, MAPK1, YWHAB, CALM1, and LYN. Four of these genes
are immune-associated genes, suggesting that the immune response
may play an important role in CJD.
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FIGURE 1 Identification of immune-/Creutzfeldt-Jakob disease (CJD)-related genes in CJD. (a) Construction of the immune- or CJD-
directed neighbour coexpressed network. Different genes are represented by different colours (green: CJD-associated genes; orange: immune-
associated genes; red: immune- and CJD-associated genes; grey: other genes). (b) Degree distribution of all nodes in the immune/CJD-related
coexpression network. (c) Venn diagram of overlapped genes between CJD-associated genes and immune-associated genes.

(d) Distinct gene numbers of different gene types

Strong coexpression pattern between immune- and
CJD-associated genes

We next constructed a CJD-directed neighbour coexpression
network to further analyse the correlation between CJD- and
immune-associated genes (Figure 2a). The CJD-directed neighbour
coexpression network is a subnetwork of the immune/CJD-related
coexpression network, created by extracting CJD-associated
genes and directly interacting partners. This subnetwork com-
prised 20 CJD-associated genes, 51 immune-associated genes,
17 immune- and CJD-associated genes, and 114 other genes. The
levels of interactions between different groups were detected
using the CDF, which showed that the CJD-associated genes and
immune- and CJD-associated genes exhibited similar coexpression
levels, whereas immune-associated genes showed the highest co-
expression level with their interacting genes (Figure 2b). Similarly,
the immune-associated gene group presented the maximum
Pearson correlation value (Figure 2c). We also discovered that the
gene expression correlations were significantly distinct between
the immune-associated and the other gene groups. We subse-
quently constructed a coexpression network comprising only CJD-
associated genes and their directly interacting genes (Figure 2d).
Twenty CJD-associated genes were extracted from the network,
and most of them interacted with immune-associated genes, such
as NEFL, CHGB, ATF2, and YWHAH. Notably, NEFL showed strong
coexpression with immune-associated genes, including VIM, PKN1,
and SPTAN1. Moreover, the results of Pearson correlation analyses
suggested that most of the CJD-associated genes were positively
correlated with immune-associated genes, and a small number of
CJD-associated genes were negatively correlated with immune-
associated genes (Figure 2e). These results demonstrate that there
may be complex interactions and patterns of expression between

CJD- and immune-associated genes.

CJD-specific modules are special classifiers in CJD

Although we obtained one CJD-directed neighbour coexpres-
sion network, we did not know which genes and their interact-
ing genes were closer to CJD. Using GraphWeb, we identified six
modules from the network: MAPK1, CASP3, APP, MAPT, SNCA,
and YWHAH. All of the key nodes in each of the six modules
were CJD-related genes, including both CJD-associated genes
and immune- and CJD-associated genes (Figure 3a). The number
of genes in each module was variably distributed, and 37, 19, 19,
18, 17, and 10 genes were identified, respectively (Figure 3b).
Moreover, all of the key nodes in the six modules interacted

with immune-associated genes, especially in the MAPK1 mod-
ule. Furthermore, all genes in the MAPK1, CASP3, APP, MAPT,
and SNCA modules belonged to the immune- and CJD-associated
genes, which further demonstrated that the immune system plays
a vital role in CJD.

To further explore the significance of the genes associated
with each module, we carried out a synonymous cluster analy-
sis based on the gene expression data. We determined the opti-
mum number of groups based on the CDF values and the relative
change in the area under the curve of the CDF plot. Interestingly,
the results showed that the samples in the MAPK1, MAPT, and
SNCA modules were divided into three subtypes. The samples in
the APP and YWHAH modules were each divided into four sub-
types, and the CASP3 module included five subtypes (Figure 3c-f,
Figure S1).

Coexpression status and expression level of CJD-
specific genes

We further dissected the coexpression status of each module, and
the results showed a very high coexpression pattern for any two
genes. We then screened for gene pairs with absolute coexpression
values of >0.5. In addition, we selected for coexpression correlation
coefficients of >0.7 in each module, with the minimum proportion
being 32.6% in the APP module and the maximum proportion being
48.95% in the CASP3 module. The SNCA and YWHAH modules
showed the most similar coexpression patterns (Figure 4a,b, Figure
S2).

Next, we identified the DEGs between patients with CJD and
nonneurological controls, and we found that the gene expression
profile differed between CJD and control samples in each module.
The majority of genes in the SNCA and YWHAH modules were
downregulated (Figure 4c,d, Figure S2).

To determine which DEGs in the six CJD-specific modules might
play an important role in the disease, we mapped the neighbour co-
expression network including CJD-associated genes, immune- and
CJD-associated genes, and immune-associated genes (Figure 4e).
The results showed that SNCA was coexpressed with three im-
mune- and CJD-associated genes, three immune-associated genes,
and one CJD-associated gene, and five, four, three, and three genes
were coexpressed with MAPT, APP, MAPK1, and FYN, respectively.
Interestingly, among the genes coexpressed with SNCA, MAPT, APP,
MAPK1, and YWHAH were key nodes in the six modules, and they
were all downregulated. The above analysis suggests that the key
nodes of the six CJD-specific modules may be potential biomarkers
of CJD.
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FIGURE 2 Coexpression of immune- and Creutzfeldt-Jakob disease (CJD)-associated genes in CJD. (a) Construction of the CJD-directed
neighbour coexpressed network (CDNC network). Different genes are represented by different colours (green: CJD-associated genes;
orange: immune-associated genes; red: immune- and CJD-associated genes genes; grey: other genes). (b) Cumulative distribution curves

of Pearson correlations for different gene types. (c) Violin plots of Pearson correlations for different gene types; ***p < 0.001. (d) The
subnetwork of CJD-associated genes and their directly interacted genes was extracted from the CDNC network. (e) Heatmap of correlation
between CJD-associated genes and immune-associated genes. CDF, cumulative distribution function; ns, not significant

Biological function analysis of CJD-specific modules
shows that it is closely related to infection and
immune response

To further investigate the biological functions of key nodes and their
interacting genes in CJD-specific modules, we performed Kyoto
Encyclopaedia of Genes and Genomes (KEGG) enrichment analy-
ses using the R package "clusterProfiler." The results revealed the
following conjoined pathways to be enriched in the MAPK1 and
APP modules: "ErbB signalling pathway" (p = 2.91 E-07, p = 1.08

(c) (d) (e)

consensus matrix k=3
consensus CDF

00
2

E-05, respectively), "neurotrophin signalling pathway" (p = 4.08
E-05, p = 4.09 E-05), "chronic myeloid leukaemia" (p = 4.55 E-06,
p = 0.0003), and "growth hormone synthesis, secretion, and action"
(p = 4.08 E-05, p = 0.001). The term "Alzheimer disease" (p = 4.33
E-08, p = 3.26 E-06, p = 3.17 E-05) was enriched in the APP, MAPT,
and SNCA modules, respectively; "Parkinson disease" (p = 0.001,
p = 3.31 E-06), "hepatitis C" (p = 0.003, p = 0.0002), and "oocyte
meiosis" (p = 3.60 E-06, p = 7.33 E-05) were enriched in MAPT
and SNCA; and "cell cycle" (p = 0.002, p = 0.0003) was enriched
in the MAPT and YWHAH modules (Figure 5a-f). Interestingly, we
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FIGURE 3 Clustering immune-associated subnetwork in Creutzfeldt-Jakob disease (CJD). (a) The critical modules extracted from the
immune- or CJD-directed neighbour coexpressed network, and different types of gene were marked using different colours (green: CJD-
associated genes; orange: immune-associated genes; red: immune- and CJD-associated genes; grey: other genes). (b) Distinct gene numbers
of genes in different modules. (c) Cumulative distribution curves of the consensus index. (d) Relative change in area under the cumulative
distribution function (CDF) curve of different group numbers. (€) Consensus cluster heatmap of samples. (f) Heatmap of gene expression.
Subtype (sub) refers to the group type classified by the consensus cluster method, and sample_type refers to the disease status of the

samples
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FIGURE 4 Correlation between immune- and Creutzfeldt-Jakob disease (CJD)-associated genes in clusters. (a, b) Coexpression heatmaps
of genes in the SNCA and YWHAH module clusters. (c, d) The gene expression levels of the SNCA and YWHAH module between CJD and
normal samples. Significantly differentially expressed genes have been labelled (*, **, and *** indicate significance level of 0.05, 0.01, and
0.001, respectively). (e) The coexpression network constructed by differentially expressed genes in a CJD-specific module

observed that CASP3 did not have any enrichment pathways that
overlapped with the other five modules. KEGG enrichment analy-
sis suggested that some of the key pathways in the CASP3 mod-
ule were associated with infection, such as "Salmonella infection"
(p =5.08 E-05), "Yersinia infection" (p = 0.0001), and "toxoplasmosis"
(p = 0.002). In addition, some KEGG pathways related to apoptosis
were abundant, including "apoptosis" (p = 6.79 E-06), "apoptosis-
multiple species" (p = 3.76 E-05), and "TNF signalling pathway"
(b =7.41 E-05).

To gain a better understanding of how module genes drive CJD
progression, we next analysed the enrichment pathways of genes in
all modules by biological function enrichment analysis (Figure 5g).
The top 10 results of enrichment pathways revealed by KEGG anal-
ysis included "hepatitis C" (p = 1.22 E-11), "apoptosis" (p = 3.84
E-10), "ErbB signalling pathway" (p = 6.32 E-09), "Alzheimer dis-
ease" (p = 7.45 E-09), "neurotrophin signalling pathway" (p = 1.39
E-08), "prolactin signalling pathway" (p = 1.72 E-08), "pathogenic
Escherichia coli infection" (p = 2.66 E-08), "Salmonella infection"
(p = 6.16 E-08), "sphingolipid signalling pathway" (p = 1.66 E-07),
and "FceRl signalling pathway" (p = 2.29 E-07). Two important im-
mune signalling pathways were identified based on the enrichment
pathway of the model (Figure 6).

Collectively, these results indicate that the pathogenesis of CJD
is closely related to infection and to the immune response.

DISCUSSION

In recent years, the rapid development of molecular biotechnology
has led to great progress in our understanding of CJD. Although
studies on microglial immune activation in CJD have been reported,
there are no studies that have described immune-associated genes as
CJD biomarkers. In this study, we used a PPl network from the HPRD
database, immune-associated genes from the Amigo database, and
CJD-associated genes from the DisGeNET database to construct a
CJD-specific coexpression network of immune- and disease-related
genes. The coexpression relationship between immune- and CJD-
associated genes was confirmed by layer-by-layer network screen-
ing. Using GraphWeb, we identified key disease modules and genes,
and performed KEGG pathway enrichment analyses on them.

The results of the immune/CJD-related coexpression network
analysis revealed that, with the exception of YWHAB, the other four
genes with the highest connectivity were all immune-associated
genes. This indicates that immune-associated genes play an
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FIGURE 5 Biological function analysis of the significant immune-associated clusters in Creutzfeldt-Jakob disease (CJD). (a-f) Bar chart of
KEGG pathway enrichment for the MAPK1, CASP3, APP, MAPT, SNCA, and YWHAH module genes, respectively. (g) The KEGG enrichment
results for all module genes. KEGG, Kyoto Encyclopedia of Genes and Genomes

important role in CJD. Further analysis of 20 CJD-associated genes
extracted from a CJD-directed neighbour coexpression network
showed that the level of coexpression between CJD- and immune-
associated genes was high, especially with regard to NEFL, VIM,
PKN1, SPTAN1, and other immune-associated genes, which were ex-
pressed differently in CJD and normal samples.

Six modules (MAPK1, CASP3, APP, MAPT, SNCA, and YWHAH)
were identified using GraphWeb to determine which genes were
more closely related to CJD. It is worth noting that the five modules
other than YWHAH included immune- and CJD-associated genes. In
particular, the MAPK1 module had the largest number of immune-
associated genes (14). Of the six modules, SNCA and APP contained
the highest proportion of immune genes (52.9% and 52.6%, respec-
tively). In particular, SNCA directly interacts with immune-associated
genes such as APP, MAPT, MAPK1, FYN, CALM1, and LYN. Of these,
APP, MAPT, and MAPK1 are immune- and CJD-associated genes and
are among the key nodes of the six modules. FYN, CALM1, and LYN

were the immune-associated genes with the highest expression lev-
els. We therefore speculate that the SNCA module plays an import-
ant role in the occurrence and development of CJD.

SNCA (synuclein alpha) encodes an a-synaptic soluble nuclear
protein that is expressed in the presynaptic space and around the
nucleus in CNS neurons, where it regulates the transport of synaptic
vesicles and controls the release of neurotransmitters. A recent study
found that the amino acid residues at positions 67-78 in a-synuclein
form a tilted peptide, which plays a key role in the formation of am-
yloid fibres and toxicity in nerve cells, and is closely associated with
neurodegenerative diseases [19]. Studies have determined that ab-
normal protein deposition with neurotoxicity is caused by excessive
increases in cell excitability or destruction of axon transport and
microtubule function through the tyrosine protein kinase Fyn sig-
nalling pathway [20]. CJD has a similar pathogenesis to neurodegen-
erative diseases, such as the formation and deposition of abnormal
protein conformations, synaptic dysfunction, abnormal and missing
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autophagy, and inflammation [21]. Our biofunctional analysis also
confirmed that the pathways enriched in CJD are closely related to
neurodegenerative diseases. The KEGG enrichment analysis of the
SNCA module revealed several importantimmune-related pathways,
including FceRI signalling, chemokine signalling, and FcyR-mediated
phagocytosis. The FceRl receptor belongs to a protein family that in-
cludes multiple immune recognition receptors, and the cross-linking
of FceRs stimulates the factors Lyn and Sky to activate downstream
MAPK signalling pathways [22]

MAPK (mitogen-activated protein kinase) is widely expressed in
the CNS. Stimulated by various extracellular factors, MAPK partici-
pates in the pathological process of neurodegenerative diseases by
regulating cell proliferation, differentiation, growth, and apoptosis.
The MAPK pathway has been shown to be closely involved in neu-
ronal apoptosis in neurodegenerative diseases [22]. In vitro studies
have reported that activated MAPK induces hyperphosphoryla-
tion of the tau protein, initiates apoptosis and other mechanisms,
and participates in the development of Alzheimer disease [23]. The
neuronal microtubule-associated protein tau (encoded by MAPT)
is abnormally expressed in the CSF of patients with CJD, and the
determination of total and phosphorylated tau protein in CSF are
valuable indicators in the diagnosis and differential diagnosis of CJD
[24-26].

Our biological function analyses showed that immune/CJD-
related genes were enriched in pathways associated with infection
and the immune response. In recent years, an increasing number
of epidemiological and experimental studies have shown that per-
sistent infection in the brain can lead to protein misfolding and ag-
gregation, resulting in oxidative stress injury, abnormal autophagy,
apoptosis, and programmed necrosis, ultimately leading to neuro-
nal damage and promoting the development of neurodegenerative
diseases [27-33]. Continuous infection and abnormal protein depo-
sition may lead to severe microglial activation. Activated microglia
trigger chemotaxis and phagocytosis through mer receptor tyrosine
kinases and release cytokines, proteases, and superoxides to remove
harmful substances and protect neurons, thereby triggering neu-
roinflammation [34,35]. Previous studies have confirmed an increase
in expression of pro- and anti-inflammatory cytokines and immune
mediators in the CSF and brains of sCJD patients [8,36]. The sus-
tained and excessive activation of microglia prevents nerve repair
and leads to synaptic and oxidative damage, and mitochondrial dys-
function [37], which may play a role in inducing and promoting the

neurodegeneration of CJD.

CONCLUSION

The analyses from our study shown that immune- and CJD-
associated genes are strongly correlated not only at a network level,
but also in their patterns of expression. The functional enrichment
analysis of each module showed that they may be closely related to
the pathogenesis, infection, diagnosis, and treatment of CJD. KEGG
analysis of the module genes also identified key nodes of the six

CJD-specific modules, which may have potential as clinical biomark-
ers and therapeutic targets, and are worth exploring in future basic
research and clinical studies.

There were a few limitations to our study. Due to the low in-
cidence of CJD, this study was based on clinical data from a very
small number of CJD samples. Owing to the difficulty in obtaining
CJD samples, the study of its aetiology is currently limited to bioin-
formatic methods. Further experiments are needed in the future to

experimentally confirm the results of this study.
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