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Abstract

In this work, we have successfully in-situ synthesized Na* and Co™* co-doped Li, gNag ;Mn, _Co,PO,/C nanoparticles on the
surface of Li, 1Nay PO, self-sacrificing template by the co-precipitation process combined with the hydrothermal method. The
crystal lattice structure, crystal appearance and electrochemical parameters are characterized by X-ray diffractometer (XRD),
scanning electron microscopy (SEM), galvanostatic charge and discharge test, cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS). SEM analysis indicates that Liy ¢Nag ; Mny ¢Coy ; PO,/C composite shows uniform porous struc-
ture and nanosized grain particles. The electrochemical measurements show that the double ions co-doping routine plays a vital
influence on the rate capability and electrochemical lithium storage property of LiMnPO,, material. The initial discharge specific
capacity of Liy ¢Nay Mny ¢Cop ,PO/C reaches 164.3 mAh/g (0.05 C) and 148.0 mAh/g (1 C), respectively. The excellent rate
capability is attributed to the synergetic doping effect of Na* and Co®* on improving the Li-ion diffusion rate and broadening the

Li-ion diffusion channels.
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Introduction

As new energy vehicles and electrochemical energy storage
devices develop dramatically, the growing demands have
been proposed on developing high energy/power densities
lithium-ion power battery to satisfy people’s production and
living needs [1-5]. The cathode material is a critical ingredient
of lithium-ion battery (LIBs): among the olivine phosphate
family, LiMnPO, has been regarded as a significant cathode
over commercial LiFePO, due to the superiority of discharge
voltage platform, specific energy density (700 Whikg), supe-
rior safety and low price [6~9], which could also match the
existing electrolytic liquid system. However, the high Li-ion
diffusion activation energy and the one-dimensional channel
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lead to sluggish electronic/ionic conductivity and inferior
electrochemical performance of LiMnPOy [10, 11]. The crys-
tal structure transformation between LiMnPO,/MnPO,
caused by the Jahn-Teller effect would induce the collapse
of lattice structure and the inferior cyele performance. To date,
a good deal of modification methods [12-26] have been
adopted to ameliorate electrochemical lithium storage proper-
ty of LiMnPO./C. In general, the cation doping of LiMnPO,
cathode with similar ionic radius to Mn>* is an effective means
to break through the barrier, the strategy of mutual cations
doping at Li/Mn site could widen the one-dimensional Li-
ion diffusion path, maintain the crystal structure stability and
accelerate the Li-ion diffusion velocity [27, 28]. The selection
of dopant is also a critical factor, the Co™* (0.74 A) has the
similar ion radius to Mn** (0.80 A), which is the main factor
for choosing Co™* as a dopant to inhibit lattice volume expan-
sion and ameliorate the Jahn-Teller distortion of Mn™* [29,
30]. Wang et al. [31] has synthesized the gradient Co-doped
LiMny, 9sCo0p POy by the secondary solvothermal method,
the capacity retention of LiMng¢sCog 02POy4 is remarkably
improved with the percentage of 87% after 380 cycles, the
improvement is mainly due to the preferential growth along
[010]-oriented LiMnPQy with more Li* migration channels
and reaction sites. The Na-doped Liy Nag ; MnPO.,/C material
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[32] and the Na* and Ni** co-doped Liy oNag ;Mn,_Ni PO,/C
cathode materials [23] have been studied in my research
group, which show excellent discharge capacity and cycle
stability. With the deepening of research, various methods
have emerged to prepare double ions co-doped polyanionic-
based LiMnPQ,/C cathode materials [33-38]. Huang et al.
[33] have prepared Fe’* and Ti** co-doped LiMnPO,/C cath-
odes by a solid-state reaction route, the synergistic effect
greatly enhances the electrochemical performance. Ramar
and Balaya [34] have adopted a ball mill-assisted sofi template
method to synthesize the isovalent co-doped
LiMng oFep 0sMgo0sPO4/C sample, which shows higher lith-
ium storage capacity (159 mAh/g, 0.1 C) and better cycling
stability compared to LiMnPO, doped with either Fe** or
MglJ', Recently, Li et al. [35] have adopted a solvothermal
method to prepare Li;_ NaMn sFe, -PO,/C nanocapsule; af-
ter 200 cycles, the capacity retention ratio is nearly 96.65%
(0.5 C). Among these, hydrothermal approach has been se-
lected as a high efficiency and good controllability synthesize
method to optimize the electrochemical performances.
Therefore, the strategy of cobalt ions and sodium ions co-
doped at Mn/Li site seems to be a prospective attempt to
enhance the electrochemical lithium storage performance of
LiMnPQj through affording more lithium ions diffusion chan-
nels and reaction sites.

In this paper, we have adopted co-precipitation method to
prepare Lis 7Nay 3P0, self-sacrificial template; subsequently,
the nanosized Li, ;Nay ;Mn_,Co,P0./C cathode materials
have been in-situ synthesized on the surface of
Lis 7Nag 3P0y by a facile hydrothermal reaction. The micro-
structure, grains size and electrochemical characteristics of
LigoNag Mn;_ Co,PO,/C are systematically researched to
evaluate the co-doping effect of Na* and Co”* on improving
the electrochemical properties of LiMnPO,/C.

Experimental
Preparation

The different cobalt ion doping amounts of LiygNay Mn,_
+C0,PO,/C cathodes have in-situ synthesized through the hy-
drothermal method, using as-prepared Li; ;Nay;PO, and
MnS0,4-H,0 as mainly raw materials, Co(NO;),-6H,0 as
doping material. The Li, ;Na, sPO; precursor has been suc-
cessfully prepared in my previous work [32]. Other raw ma-
terials were analytically pure and commercially available
without any treatment. To clarify the influence of cobalt ion
doping on the electrochemical parameters of Lip¢Nay Mn,
«C0,PO,/C cathode materials, parallel experiments were con-
ducted on maintaining all parameters that remain the same and
only changing the contents of cobalt ions.

@ Springer

The synthesis process of LiggNay ;Mn,_,Co,PO,/C was
described as follows. Firstly, the Li, sNay;PO4, MnSO,-
H,0 and Co(NQO;), 6H,0 were, respectively, resolved in the
PEG400-H>0 (Vpggane Vizo=12 ml/24 ml) mixture solvents
in a 1:1-x:x mole ratio, then the mixture solvents kept vigor-
ous stirring for about 30 min to obtain the homogeneous so-
lution. The above mixture solution was dissolved in a 50 ml
Teflon-lined hydrothermal autoclave and reacted at 180 °C for
12 h. After the hydrothermal reaction, the synthetic substance
was gathered after washing, centrifuged with deionized water
and alcohol several times, then dryed in the oven at 80 °C for 8
h. Finally, the Lig¢Nag 1Mn;_Co,PO4/C hydrothermal prod-
uct was mixed and grinded with ascorbic acid in a mass frac-
tion of 20 wt.9% to form uniformly distributed ascorbic acid
coated precursor; after calcination at 550 °C for 3 h in the
flowing nitrogen gas atmosphere, the target Liy oNag Mn,_
Lo, PO,/C were obtained.

The electrochemical properties of Lip oNag 1Mn;_Co,POy/
C cathodes were measured by CR2032 coin cell, and fabricat-
ed in argon filled glove box. The cathode coating slurry was
prepared through mixing the cathode material, PVDF binder
and acetylene in a 8:1:1 mass ratio in NMP solvent under
continuously vigorous stiring for 4 h. The aluminum foil
collector was prepared by coating the cathode slurry on the
aluminum foil, drying at 80 °C for 10 h in air, and the follow-
ing 120 °C for 12 h under vacuum condition, aiming to evap-
orate the NMP and H>O. After rolling and cutting, the 0.785
en’ circular sheet was formed. In the assembly process of
CR2032 coin cells, lithium wafer, Celgard 2400 membrane
and 1M LiPF&/EC+MEC+DEC (volume ratio=1:1:1) mixture
solution was served as the anode, separator and electrolyte in
furmn.

Characterization

The microstructures and crystal lattice data were tested by X-
ray diffractometer (XRD, Rigaku Smartlab) with Cu Ko radi-
ation under a sweep rate of 0.047/s. The appearance of the
crystal, grain size, pore structure of the doped materials were
investigated by scanning electron microscopy (SEM, ZEISS
SUPRASS) and transmission electron microscopy (TEM,
JEOL JEM2100F). The concentration of Mn>* and Co>* re-
solved in the electrolyte was measured by the inductively
coupled plasma-atomic emission spectrometer (ICP-AES,
PS-6).

The electrochemical parameters of the CR2032 coin cell
was measured by the charge/discharge measurements on the
Land CT2001 A battery tester within the wide operating volt-
age range (2.5—4.5 V). The charge transfer kinetics and elec-
trode polarization phenomenon were tested by CV and EIS
methods on the Solartron 1260+1287 electrochemical work-
station. The EIS test frequency was in the range of 107'-10°
Hz, and the voltage amplitude was set to 10 mV. The CV test
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Fig. 1 XRD diffraction pattems of LigeNag Mn, Co,POL/C (x = 0,
0.05, 0.1, 0.15, 0.2, 0.3) samples

voltage range was on the scale of 2.5-4.5 V at a 0.1 mV/s
sweep rate. All measurements were tested at ambient

temperature.

Results and discussion

The Na* and Co®* co-doped Liy ¢Nay ;Mn, Co,PO,/C sam-
ples have been synthesized through the hydrothermal method:
in the doped samples, the doping ratio of Na* is fixed at 0.1,
and vary the Co>* contents ratio (x) with 0, 0.05, 0.1, 0.15,
0.2, 0.3. Fig. 1 displays the XRD patterns of LipoNag Mn; .
«C0,PO,/C samples, and the JCPDS standard card of
LiMnPOy (No. 33-0803). The main characteristic diffractive
peaks of all doped samples are well indexed with the

orthorhombic system (Pnmb) of LiMnPO,. From the
Riteveld lattice parameters of all the Li, ,Na,MnPO,/C dif-
fraction patterns calculated by High Score Software, we have
found that the lattice constant values of Co-doped samples
change little with no obvious regularity, which is largely due
to the similar ion radius of Co™ (0.74 A) to Mn™* (0.80 A). In
the sample of x =0 and x = 0.05, an additional diffraction peak
is observed at 34.4°, which is associated with Li;PO, phase
(JCPDS card No. 25-1030), and in accordance with our pre-
vious research [32]. There are no evident impurities and car-
bon diffraction peaks, which means that the pyrolytic carbon
exists in amorphous form. This indicates that Na* and Co™
have embedded into the crystal lattice of LiMnPOy, and a
certain amount of Na* and Co™ could not influence the crystal
structure of the doped samples. The shape of the diffraction
peaks is very narrow and strong mean the high crystallinity of
the as-prepared materials.

Figure 2 displays the SEM photographs of different cobalt
ion doping amounts of Liy gNag ;Mn,_ Co,PO,/C samples. It
can be found that the morphologies of all samples present
similar microstructures with irregular spherical-like shape pri-
mary particles aggregating together. The average diameters of
the primary particles are ranging from 40 to 80 nm. When the
cobalt doping ratio (x) is 0.1, the inner pore structure seems
more uniform in distribution, indicating that an appropriate
cobalt doping ratio could effectively increase the reactivity
between active material and electrolytes across the two-
phase interface. The real chemical compositions of
Lig gNag ;Mng 4Coy ; PO,/C sample are measured by ICP,
and the practical molar ratio of Li:Na:Mn:Co:P is
0.907:0.093:0.897:0.103:1.000. The results are nearly the de-
signed stoichiometric ratio of 0.9:0.1:0.9:0.1:1.

Figure 3 shows the TEM photographs of
LipgNag ;1Mng ¢Cog ; PO4/C sample. Numerous nanosized
grains stack tightly together with the average diameters of

Fig. 2 SEM photographs of as-prepared Liy oNag  Mny . Co POYC(x =0, 0.05, 0.1, 0.15, 02, 0.3) samples
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Fig. 3 TEM photographs of
Lig oNag MngoCoy POJC
sample

22-58 nm. It can be seen from the high-magnification TEM
photograph in Fig. 3(b), the continuous carbon layer is uni-
formly coated on the surface of the nanoparticles with the
thickness of 4-5 nm, which is obtained by the pyrolysis of
carbon sources. The uniform conductive carbon layer will
facilitate the electronic transfer in the surface layer of the
cathode materials.

The galvanostatic charge/discharge measurements of dif-
ferent Co™* doping amounts of Lis ¢Nag Mn;_.Co,PO4/C
samples are tested at 0.05 C discharge rate, the charging and
discharging curves are displayed in Fig. 4. All the discharging
curves exhibit a lank voltage platform nearly 4.05 V (vs. L/
Li*), which are attributed to redox reaction between the redox
couple of Mn**/Mn®*. The doping amounts of Co™* greatly
affect influence the discharge specific capacity of
LigoNag ; MnPO,/C. As the Co** doping amounts increase,
the initial discharge capacity are 152.0 mAh/g, 153.5 mAh/
g, 1643 mAh/g, 144 6 mAh/g, 1374 mAh/g and 128 2 mAh/
g, respectively. For all samples, Lij oNay ;Mny 4Cop PO4/C
delivers relatively high discharge capacity. The capacity en-
hancement is attributed to a moderate cobalt ion doping
amount that could effectively improve intrinsic conductivity
and increase reactive sites during the Li-ion insertion/
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Fig. 4 The first charge/discharge curves of Ly gNay (Mn,.,Co, PO/Cix
=0, 0,05, 0.1, 0.15, 02, 0.3) samples at 0.05 C

) Springer

deinsertion process. However, excessive Co™* doping con-
tents would cause capacity deterioration. The cycle stability
and rate performance are tested to reflect the electrochemical
performance of the doped samples. The cycle performance of
Liy gNag ;Mn,_,Co,PO4/C composites is measured at 0.05 C,
and the cyelic curves are shown in Fig. 5(a). After 200 cycles,
Liy gNag ;Mng Coq ;PO,/C and Lip oNag MnPO,/C decrease
to the similar discharge capacity value, but still higher than
other cobaltion doping samples. The conclusions indicate that
excessive Co”* doping amounts would lead to poor cycle
performance. Fig. 5(b) shows the rate capability of the doped
samples measured at different rates. Obviously,
Liy oNay ;Mn, 4Coy ;POL/C electrode shows excellent rate
discharge performance, and in different rate, the discharge
capacity is 164.3 mAh/g (0.05 C), 160.4 mAh/g (0.1 C),
155.3 mAh/g (0.2 C), 152.9 mAh/g (0.5 C) and 148.0 mAKW/
g (1 C), respectively. The discharge capacity slightly de-
creases with the discharge rate increasing. It indicates that a
proper amount of Co>* doping is beneficial to obtain high rate
performance of the cathode material by means of maintaining
the structural stability and broadening the lithium ions diffu-
sion channel during the Li-ion insertion/deinsertion process.
The EIS test has been conducted to analyze the reaction
kinetics on the interface of two-phase media of Lip oNag ;Mn;_
C0,P0O4/C composite materials. Fig. 6(a) shows the EIS
curves of all the doped samples, the Nyquist curves are com-
posing of a semicircular shape and an oblique line two parts,
respectively located in the high-middle frequency range and
the low frequency range. The intercept of the semicircular on
the axis of reals is comresponding to the complex charge trans-
fer resistance (R). The slope of the straight line represents the
lithium ion diffusion velocity (W,,). The value of R, is differ-
ent. The LigoNay Mn, ¢Coy ;PO4/C sample exhibits the
smallest R, value, indicating that Li,4Nay ;Mng ¢Cog PO,/
C shows the smallest charge transfer resistance. For further
understanding the Na* and Co™ co-doping effects on the
charge transfer dynamics, we have fitted the EIS results and
the linear fitting curves between Z' and w™"? are represented
inset in Fig. 6(a). According to the equation Z' =R + R+
ow ", we could obtain the Warburg factor (o) of all the
samples by calculating the slope of the equation. The
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Fig. 5 The cycling ability (a) and the rate performance (b) of Liy yNay ,Mn,_ ,Co, PO,/C (x =0, (.05, 0.1, 0.15, 0.2, 0.3) samples

Lig ¢Nag (Mg oCog 1PO4/C shows the lower o value, which
means that the sample has the higher lithium ion diffusion
coefficient (D ;*). The results show that
LigoNag 1 MngpeCop 1PO4/C has low electrode polarization
and excellent reaction kinetics in the Li-ion insertion/
deinsertion process. In a word, the synergistic effects of Na*
and Co™ co-doped are beneficial to Li-ion diffusion in the
lattice structure of the cathode materials.

From the CV plots of Lig ¢Nag ;MnPO4/C and
Liy gNag Mny ¢Coy  POL/C samples in Fig. 6(b), a couple of
good symmetrical reversible redox peaks have been found,
which are assigned to the redox reaction of Mn**/Mn** ac-
companied with the Li-ion insertion/deinsertion process. The
redox process is a quasi-reversible reaction. In the cycle pro-
cess, the redox voltage difference values of Liy yNay ;MnPO./
C and Liy ¢Nay ;Mny, oCoy ,PO/C are close to 054 and 0.43
V. With the adding of cobalt ions, the potential interval de-
creases slightly with no serious electrode polarization, illus-
trating that a proper doping ratio of Na* and Co®* is favorable
to improve the reaction reversibility and reduce electrode po-
larization rate of LiMnPO4/C.

Conclusions

In this work, Na* and Co®* co-doped Liy sNay ;Mn,_,Co, PO,/
C nanoparticles have been successfully in-situ prepared on the
surface of Li, ;Nay PO, self-sacrificing template through the
co-precipitation process combined with the hydrothermal
method. A proper doping ratio of Co™*/Na® is beneficial to
reduce the grain size, increase pore size and porosity, and
further improve the migration velocity of lithium ion. By com-
paring with other doped samples, Lij ¢Nag ;Mng ¢Coq ;PO,/C
sample shows the superior high discharge capacity of 164.3
mAbh/g (0.05 C) and 148.0 mAh/g (1 C), which exhibit excel-
lent discharge performance induced by the abundant pore
structure and the widened Li-ion diffusion channel of the cath-
ode material.
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