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Abstract
Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, pose significant 
health challenges and economic burdens worldwide. Recent studies have emphasized the potential therapeutic value of 
activating silent information regulator-1 (SIRT1) in treating these conditions. Resveratrol, a compound known for its ability 
to potently activate SIRT1, has demonstrated promising neuroprotective effects by targeting the underlying mechanisms of 
neurodegeneration. In this review, we delve into the crucial role of resveratrol-mediated SIRT1 upregulation in improving 
neurodegenerative diseases. The role of the activation of SIRT1 by resveratrol was reviewed. Moreover, network pharma-
cology was used to elucidate the possible mechanisms of resveratrol in these diseases. Activation of SIRT1 by resveratrol 
had positive effects on neuronal function and survival and alleviated the hallmark features of these diseases, such as pro-
tein aggregation, oxidative stress, neuroinflammation, and mitochondrial dysfunction. In terms of network pharmacology, 
the signaling pathways by which resveratrol protects against different neurodegenerative diseases were slightly different. 
Although the precise mechanisms underlying the neuroprotective effects of resveratrol and SIRT1 activation remain under 
investigation, these findings offer valuable insights into potential therapeutic strategies for neurodegenerative diseases.
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Introduction

Neurodegenerative diseases, such as Alzheimer’s disease 
(AD), Parkinson’s disease (PD), and Huntington’s disease 
(HD), are characterized by abnormal protein aggregation, 
leading to neuronal damage. Without effective treatment, 
the number of affected individuals with these diseases is pro-
jected to double every 20 years (Komorowska et al. 2020). 
Given the complexity of diseases, the quest for effective 
treatments remains challenging. However, there is promis-
ing evidence that plant-derived polyphenolic compounds, 
such as resveratrol, could serve as potential neuroprotective 
agents. Resveratrol, a polyphenolic compound abundant in 
various plants, has been extensively studied and documented 
for its antiaging, anti-inflammatory, and antibacterial proper-
ties (Bartra et al. 2024; Hosoda et al. 2023; Vestergaard and 
Ingmer 2019). This compound is a potent activator of silent 
information regulator-1 (SIRT1) and has the ability to cross 
the blood–brain barrier, offering neuroprotection within 
the central nervous system (dos Santos et al. 2022; Surya 
et al. 2023). In this report, we reviewed recent studies that 
have shed light on the role of SIRT1 in neurodegenerative 
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diseases. The aim of this study was to provide a reference 
for the development of resveratrol as a novel therapeutic 
agent for treating these conditions. By understanding the 
involvement of SIRT1 in neurodegenerative diseases and 
exploring the therapeutic potential of resveratrol, research-
ers have attempted to pave the way for the development of 
innovative strategies that can effectively manage and treat 
these debilitating conditions.

Sources, isomers, and bioavailability 
of resveratrol

Resveratrol, also called 3,5,4ƍ-trihydroxystilbene in chem-
istry, was first identified from the roots of white hellebore 
in 1939 (Pezzuto 2019). Resveratrol is classified as a phy-
toalexin that is secreted by at least 100 different plants as a 
defense mechanism in response to multiple environmental 
stresses, including pathogen infection, mechanical injury, 
UV irradiation, and immense heat. The content of resvera-
trol in plants is limited and is abundant mainly in the edible 
portions. The health benefits of resveratrol have been high-
lighted since the French paradox in 1992. The results of 
the French paradox study indicated that moderate red wine 
consumption reduced the incidence of ischemic heart disease 
because of the abundance of resveratrol in red wine, despite 
the consumption of a diet rich in saturated fatty acids in 
French people (Buja 2022). Owing to the various beneficial 
health effects of resveratrol, people are passionate about 
drinking red wine to ingest resveratrol. To date, resveratrol 
has been detected in many common human diets at varying 
concentrations, including fruits, nuts, fruit juices, and cocoa, 
and some of them have a higher content of resveratrol than 
that in red wine (Table 1).

Resveratrol has two isomers in nature, cis-resveratrol 
and trans-resveratrol (Fig. 1). The basic structure of res-
veratrol consists of two phenolic rings bonded with a 
double styrene bond. This double bond is responsible for 
the conversion of the isometric cis- and trans-forms of 
resveratrol (Gambini et al. 2015). The stability of the cis 
form is low, and it is stable only at a neutral pH and in the 
absence of light. The trans isomer is stable at an acidic pH 
and various temperatures, but is unstable at an alkaline 
pH, under light, and at increased temperatures (> 100 °C) 
(Bancuta et al. 2018; Zupančič et al. 2015). However, the 
trans isomer of resveratrol can convert to the cis isomer 
after exposure to high temperatures, an alkaline pH, or 
ultraviolet irradiation (Zupančič et al. 2015). Initially, the 
trans isomer was thought to be the main bioactive form 
of resveratrol, which has higher bioactivity than the cis 
isomer (Tomić et al. 2023). Current studies have indicated 
that both cis-resveratrol and trans-resveratrol have bioac-
tivity, and the isomers sometimes have opposite effects 

(Jeon et al. 2023; Jhanji et al. 2020). Recently, they were 
found to have opposite effects on neuronal survival under 
stress conditions by regulating tyrosine tyrosyl-tRNA syn-
thetase levels in rat cortical neurons. Cis-resveratrol has a 
protective effect against oxidative DNA damage in neurons 
(Jhanji et al. 2022).

The water solubility of resveratrol is low, only approxi-
mately 0.02–0.03 mg/mL (Chung et al. 2020). Although 75% 
of resveratrol can be absorbed in the intestine by passive 
diffusion or membrane transporters after oral administration, 
the bioavailability of resveratrol is still very low and is less 
than 1% due to its rapid metabolism (Walle 2011). Moreo-
ver, repeated administration or increased dosage administra-
tion cannot increase the bioavailability of resveratrol when 
orally administered (Almeida et al. 2009; Brown et al. 2010). 
Absorbed resveratrol is rapidly and extensively converted by 
glucuronic acid conjugation and sulfation in the intestine and 
liver (Wenzel and Somoza 2005). Although free resveratrol 
can be detected in the bloodstream, glucuronide and sulfate 

Table 1  The diet sources of resveratrol

Diet sources Concentration of res-
veratrol

Ref

Red wine 0.11–3.19 mg/100 ml (Lamikanra et al. 1996)
Mulberry 5.061 mg/100 g dry 

weight
(Shrikanta et al. 2013)

Jamun pulp 1.37 mg/100 g dry 
weight

(Shrikanta et al. 2013)

Strawberry 0.35 mg/100 g fresh 
weight

(Ehala et al. 2005)

Cowberry 3 mg/100 g fresh weight (Ehala et al. 2005)
Red currant 1.57 mg/100 g fresh 

weight
(Ehala et al. 2005)

Cranberry 1.92 mg/100 g fresh 
weight

(Ehala et al. 2005)

Peanuts 1.12 mg/100 g fresh 
weight

(Chukwumah et al. 2006)

Dark chocolate 0.04 mg/100 g fresh 
weight

(Counet et al. 2006)

Blueberry 0.383 mg/100 g fresh 
weight

(Carey et al. 2013)

Pistachio 0.11 mg/100 g fresh 
weight

(Tokuşoۜlu et al. 2005)

Fig. 1  The trans- (A) and cis- (B) isomer of resveratrol



Naunyn-Schmiedeberg's Archives of Pharmacology 

metabolites constitute the majority of metabolites produced 
after its administration (Gambini et al. 2015).

Biological activity and e"ect mechanism 
of resveratrol

Resveratrol, which is reported to influence various cellular 
signaling pathways, has diverse pharmacological effects, 
including anticancer, antioxidant, anti-inflammatory, and 
antimicrobial effects. As reported, it modulates many micro-
RNAs involved in the initiation and progression of cancer 
and inflammatory disorders (Amiri et al. 2020; Ungurianu 
et al. 2023). Additionally, it induces tumor cell apoptosis, 
thereby exerting anticancer effects (Brockmueller et al. 
2023). Resveratrol suppresses neuroinflammation by par-
tially inhibiting the Janus kinase (JAK)/signal transducer 
and activator of transcription (STAT) signaling pathway 
to alleviate mechanical allodynia in a rat model of spinal 
cord injury (Han et al. 2023). Resveratrol has been shown 
to reduce the inflammatory response and oxidative stress 
and to improve poststroke cognitive disorders by regulating 
the JAK/extracellular signal-regulated kinase (ERK)/STAT 
signaling pathway (Chang et al. 2018).

Interaction of SIRT1 and resveratrol

Mammalian sir tuins comprise seven homologs 
(SIRT1–SIRT7), unique histone deacetylases, and accom-
plish nicotinamide adenine dinucleotide (NAD)-dependent 
deacetylation, which has received considerable interest as 
a potential mediator of lifespan extension in model ani-
mals (Chojdak-Łukasiewicz et al. 2022; Jęśko et al. 2016). 
SIRT1, an NAD-dependent histone deacetylase, modulates 
the expression of genes via histone deacetylation. SIRT1 
is expressed in most body parts, including the brain, heart, 
kidney, liver, pancreas, spleen, skeletal muscle, endothelial 
tissue, and white adipose tissue (Elibol and Kilic 2018). 
SIRT1 plays an important role in many physiological and 
pathological processes, and finding small molecule activa-
tors that regulate SIRT1 activity is an effective strategy for 
treating related diseases.

Resveratrol, a small molecule activator of SIRT1, has 
been shown to stimulate the activity of native SIRT1 in vivo. 
Twenty years ago, researchers discovered that resveratrol 
can reduce the Michaelis constant of the acetylated substrate 
NAD-SIRT1 and extend the lifespan of Saccharomyces 
cerevisiae by activating SIRT1-dependent deacetylation of 
p53 (Howitz et al. 2003). Although the question of whether 
resveratrol can directly activate SIRT1 is controversial, 
allosteric mechanism studies have shown that resveratrol 
can strengthen the “loose-binding” of SIRT1 and substrates 

containing bulky hydrophobic groups. Resveratrol can not 
only improve the binding of SIRT1 to its substrates but also 
significantly increase the expression of SIRT1. To investi-
gate the conditions underlying the activation of SIRT1 by 
resveratrol, three different synthesized p53 acetyl peptide 
substrates were used for testing. Researchers have reported 
that in the presence of resveratrol, substrates containing fluo-
rescent groups bind more tightly to SIRT1. By constructing 
a model of SIRT1 binding to the 7-amino-4-methylcoumarin 
(AMC)-containing peptide of p53, they reported that the 
binding of resveratrol to SIRT1 promotes conformational 
changes, leading to better adaptation of the connected cou-
marin groups (Borra et al. 2005). With further progress, 
researchers have crystallized SIRT1 with resveratrol and 
the p53-AMC peptide to construct a complex structure (Cao 
et al. 2015). Three resveratrol molecules were found in this 
structure, two of which are involved in mediating the inter-
action of the AMC peptide and the N-terminal domain of 
SIRT1 and are crucial for resveratrol-dependent stimulation 
of p53-AMC, both of which are located in the N-terminal 
domain (Fig. 2). The third one is located next to the cata-
lytic domain of SIRT1, situated on the opposite side of the 
coumarin ring. These findings provide clear evidence for 
the direct binding and activation of SIRT1 by resveratrol.

SIRT1 in neurodegenerative diseases

Currently, the fundamental pathogenic mechanism of neu-
rodegenerative diseases such as AD, PD, and HD involves 
mainly misfolded proteins. The aggregation of misfolded 
proteins, including amyloid beta (Aβ), tau, and alpha-synu-
clein (α-syn), in the central nervous system, is apparent in 
different neurodegenerative diseases (Ma et al. 2020; Zhang 

Fig. 2  Interaction between SIRT1 and resveratrol. A The over-
all structure of the interaction between SIRT1 and resveratrol. The 
SIRT1 protein in the image is green, which possesses a binding 
region containing three resveratrol molecules (carbon-colored white) 
and the p53-AMC peptide (carbon-colored red) (PDB ID 5BTR). (B) 
B is a locally enlarged image of A. The molecules of resveratrol are 
labeled as STL101, STL102, and STL702, respectively
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et al. 2020). The formation of senile plaques and neurofibril-
lary tangles in specific brain areas causes synaptic dysfunc-
tion and neuronal loss in AD. The aggregation of α-syn leads 
to dopaminergic neuronal death in PD (Bourdenx et al. 2020; 
Uddin et al. 2020). In addition, mitochondrial dysfunction, 
correlated with the onset of neurodegenerative diseases, can 
attenuate glucose and oxygen metabolism in the brain and 
can impair respiratory chain function. The amyloid pathol-
ogy and accumulation of α-syn might be bidirectionally 
related to mitochondrial dysfunction (Monzio Compagnoni 
et al. 2020). Recent studies have shown that SIRT1 is ubiq-
uitously present in AD pathology-associated brain regions, 
such as the hippocampus and the prefrontal cortex (Wong 
and Tang 2016). Reactive oxygen species and the inflam-
matory response are increased, whereas the SIRT1 level is 
decreased in the brains of patients with neurodegenerative 
diseases (Singh and Ubaid 2020). In addition, SIRT1 has 
neuroprotective effects on synaptic plasticity and cogni-
tive performance. The overexpression of SIRT1 can pro-
tect against amyloid/tau pathologies and α-syn degradation, 
whereas an abnormal reduction in SIRT1 might cause cog-
nitive dysfunction in neurodegenerative diseases (Kreiner 
et al. 2019; Lim et al. 2018; Tang et al. 2020). As mentioned 
above, SIRT1 plays crucial roles in neuroprotection, anti-
inflammatory activities, and the inhibition of p53 activity. 
Thus, it has received considerable attention as an epigenetic 
regulator of the etiological mechanism of neurodegenerative 
diseases.

SIRT1 in AD

AD is a chronic progressive neurodegenerative disease with 
clinical characteristics such as dementia, memory impair-
ment, and mental stress. AD is a common disease of demen-
tia. The population of people with AD and related dementias 
increased to 51.62 million in 2019 and will reach 152.8 mil-
lion by 2050, which has gained global attention (Mobaderi 
et al. 2024). Until now, the U.S. Food and Drug Adminis-
tration has only certified six drugs for the treatment of AD; 
however, most drugs can only relieve symptoms without 
slowing the progression of the disease (Tagliapietra 2022). 
Therefore, cognitive impairment and dementia have become 
severe socioeconomic burdens.

Resveratrol-dependent SIRT1 activation has protective 
effects through antioxidant, anti-inflammatory, and neuro-
protective functions. SIRT1 is expressed in the hippocam-
pus and prefrontal cortex and is expressed mainly in neu-
rons, astroglia, and oligodendroglia and is correlated with 
learning memory. In the central nervous system of aged 
neurons, the expression of SIRT1 decreases. Studies have 
shown that oxidative stress can contribute to a decrease 
in SIRT1 activity, particularly in aging animals (Elibol 
and Kilic 2018). Research has shown that SIRT1 knockout 

mice have a reduction in dendritic branching and density 
and a defect in long-term potentiation of the hippocampal 
Schaffer collateral pathway (Wong and Tang 2016). Zhou 
et al. established a rat model of cognitive impairment by 
subjecting the animals to long-term anesthesia with sevo-
flurane (Zhou et al. 2021). When resveratrol was adminis-
tered, cognitive function improved in the rat model, along 
with an increase in SIRT1 expression and a reduction in 
neuronal apoptosis.

Aβ, the main component of senile plaques in the brain, 
damages the structure and function of synapses and can 
ultimately cause AD. Aβ is produced by cleavage of the 
sequences of amyloid precursor protein (APP). It has been 
shown that α-secretase cleavage of APP obstructs subse-
quent amyloidogenic processing of APP and directly affects 
the formation of Aβ plaques, a neuropathological hallmark 
of AD (Wongchitrat et al. 2018). A disintegrin and metallo-
proteinase 10 (ADAM10), an antiamyloidogenic α-secretase, 
has been found to be a direct competitor for APP at the cell 
surface (Scharfenberg et al. 2019). SIRT1 attenuates the tox-
icity and aggregation of Aβ peptides in the hippocampus of 
AD patients to prevent hippocampal damage (Gomes et al. 
2018). Researchers have discovered that SIRT1 enhances 
ADAM10 expression to increase the level of α-APPs and 
decrease the β-secretase β-site APP-cleaving enzyme 1 
(BACE1) level, ultimately leading to a reduction in the level 
of Aβ, possibly through the mitogen-activated protein kinase 
(MAPK)/ERK signaling pathway (Shah et al. 2020; Thonda 
et al. 2021). A previous study demonstrated that a reduction 
in the level of Aβ via SIRT1 regulation of BACE1 tran-
scription is associated with attenuating the activation and 
transcriptional activity of nuclear factor-kappa B (NF-κB) 
by reducing the acetylation of the P65 subunit (Marwarha 
et al. 2014). However, the deficiency of α-APPs has not been 
confirmed to be directly correlated with the onset of AD. 
Therefore, understanding the relationship between secretase 
and SIRT1 is highly important for the use of SIRT1 as a 
therapeutic target for the development of new drugs for AD. 
In addition, SIRT1 activation directly reduces Aβ peptide 
and APP-CTFβ levels via autophagy in neurons (Ginsberg 
et al. 2015). Recent studies have shown that activation of the 
SIRT1-forkhead box O (FOXO) axis decreases the accumu-
lation of Aβ plaques and reverses mitochondrial dysfunction 
through PTEN-induced kinase 1 (PINK1)/Parkin-mediated 
mitophagy in the hippocampus of APP/PS1 mice (Fig. 3) 
(Zhao et al. 2021, 2022). Lin et al. conducted an experiment 
on the neuronal damage caused by chronic lead exposure 
in mice and reported that resveratrol administration signifi-
cantly reduced Aβ levels (Bai et al. 2021). The experimental 
results further revealed that the antiamyloid effect of resvera-
trol was achieved by inhibiting the activity of BACE1. In 
addition, resveratrol administration significantly reduced the 
LC3-II/LC3-I ratio and p62, indicating that resveratrol can 
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regulate the autophagy process by activating SIRT1, thereby 
promoting the clearance of Aβ.

Abnormally hyperphosphorylated tau is the major protein 
involved in neurofibrillary tangles in AD, and the suppres-
sion of tau phosphorylation or its levels might ameliorate 
AD (Jiang et al. 2020). Research has shown that tau is acety-
lated by the histone acetyltransferase p300 and is deacety-
lated by SIRT1 (Alquezar et al. 2021; Shin et al. 2021). The 
inhibition of SIRT1 can aggravate tau accumulation through 
increasing acetylation, decreasing the ubiquitination of tau 
in primary neurons and transgenic HEK293T cells (Zhang 
et al. 2020), and through increasing the level of  pSer214-tau 
in the hippocampus of ovariectomized/dᒧgalactose AD 
model rats (Ibrahim et al. 2022). A recent study revealed 
that SIRT1 inhibits the expression of tau at the transcrip-
tional level through the transcriptional factor C/EBP (Yin 
et al. 2021). Moreover, SIRT1 plays a role in the clearance 
of phosphorylated tau by activating the mammalian target of 
rapamycin (mTOR)-dependent autophagy (Fig. 3) (Li et al. 
2021).

Some studies have indicated that the activation of 
SIRT1 decreases the accumulation of Aβ and tau pathol-
ogy through the NF-κB signaling pathway (Elibol and 
Kilic 2018). NF-κB is also an essential element in regulat-
ing inflammation to protect neurons in the nervous system. 
It can modulate many chemokines, cytokines, enzymes, 
and other molecules in the process of inflammation. The 

overexpression of SIRT1 can suppress the NF-κB signaling 
pathway induced by Aβ1-42 in cultured microglial BV2 cells 
and attenuate Aβ toxicity in primary cortical cultures (Chen 
et al. 2005). Moreover, the activation of SIRT1 may pro-
mote Th2 responses and inhibit the NOD-, LRR-, and pyrin 
domain-containing protein 3 (NLRP3) signaling pathways to 
produce anti-inflammatory effects (Feng and Zhang 2019). 
A recent study revealed that SIRT1 may attenuate astrocytic 
inflammation by modulating the glycogen synthase kinase 
3 beta (GSK3β) signaling pathway in a rat model of AD 
(Fig. 3) (Abozaid et al. 2022). Wei et al. (2023) created 
animal models of anxiety and depression through maternal 
separation experiments. Researchers have shown that res-
veratrol can inhibit the NF-κB signaling pathway by activat-
ing Sirt1, reducing the levels of NF-κB p65 and acetylated 
NF-κB p65, and thus improving the inflammation, anxiety, 
and depression-like behaviors caused by maternal separa-
tion. As indicated above, the molecular mechanisms involv-
ing SIRT1 and neuroinflammation in AD are complicated.

SIRT1 is also present in mitochondria and is reported 
to modulate mitochondrial biogenesis. One study revealed 
that the inhibition of SIRT1 can obstruct the increase in 
mitochondrial transcription factor A (TFAM) and mito-
chondrial DNA copy number to damage memory (Ansari 
Dezfouli et al. 2019). The activation of SIRT1 inhibits 
apoptosis through negatively regulating Rho-associated 
kinase 1 (ROCK1) and p53 signaling pathway (Pant et al. 

Fig. 3  The role of resveratrol and SIRT1 in AD. (ĺ indicates promotion; ┤indicates inhibition)
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2013). Reports have indicated that peroxisome proliferator-
activated receptor-gamma coactivator 1 alpha (PGC-1α), 
FOXO, and nuclear factor erythroid 2-related factor 2 (Nrf2) 
play essential roles in mitochondrial biogenesis, the oxida-
tive response and apoptosis, which are associated with the 
expression of SIRT1 (Fig. 3) (Dong et al. 2020; Pratiwi 
et al. 2021; Yin et al. 2022; Zhu et al. 2021, 2022). Herein, 
we used network pharmacology to elucidate the potential 
mechanisms of resveratrol in AD. Drug targets of resveratrol 
were searched and collected from the SwissTargetPrediction, 
SEA, and PharmMapper databases. Disease targets of AD 
were searched and collected from the GeneCards and OMIM 
databases. After the key genes were screened, gene ontol-
ogy (GO) functional enrichment and Kyoto Encyclopedia of 
Genes Genomes (KEGG) pathway analyses were performed 
via the DAVID database. For the enriched KEGG pathways, 
the top 20 items with p values ≤ 0.01 were screened to draw 
bubble maps (Fig. 4). Current studies have investigated the 
role of resveratrol in improving AD through its main patho-
logical features. According to the network pharmacology 
results, lipid and atherosclerosis, endocrine resistance and 
chemical carcinogenesis-receptor activation may play a role 
in the improvement of AD by resveratrol, which provides a 
basis for follow-up research.

SIRT1 in PD

PD is an epidemic in the elderly population and affects 
approximately 1–2% of people over the age of 65 (Morales 
et al. 2021). It damages the motor system, mental system, 

and nervous system. Numerous deaths of dopaminergic neu-
rons (DNs) and glial dysfunction in the substantia nigra pars 
compacta are observed in PD (Bloem et al. 2021; Tamtaji 
et al. 2020). The main neuropathological hallmarks of PD 
are the aggregation of α-syn to form insoluble fibrils of 
Lewy bodies and the loss of DNs (Lang et al. 2022). Moreo-
ver, the oxidative stress and activated microglia that promote 
inflammatory processes are the major harms to DNs in PD 
(Guzman-Martinez et al. 2019). The pathogenesis of PD has 
not been clarified clearly until now. Genetics, environment, 
and age may be the inducing factors (Batiha et al. 2022). 
With increasing age, the level of dopamine in the body 
decreases gradually until the content of striatal dopamine 
decreases to 80%, and people exhibit Parkinson’s disease 
clinical symptoms.

A previous study revealed that α-synuclein regulates 
pathological events that cascade the response in PD (Zoey 
et al. 2021). Preventing or reducing the production and pro-
moting the elimination of α-synuclein, which can delay dis-
ease progression, is a promising therapeutic strategy for PD. 
SIRT1, which is downregulated in PD, plays a neuroprotec-
tive role in experimental PD models. SIRT1 inhibits the for-
mation of α-syn aggregates upon oxidative stress, which is 
regulated by reducing the expression of NF-кB and cleaved 
poly (ADP-ribose) polymerase 1 (cPARP-1) (Singh et al. 
2017). Moreover, SIRT1 inhibits α-synuclein aggregation 
by deacetylating proteins such as heat shock protein (HSP), 
FOXO, and PGC-1α (Chen et al. 2018; Elibol and Kilic 
2018). Autophagy is correlated with the deterioration of 
impaired organelles such as mitochondria, the endoplasmic 

Fig. 4  GO (A) and KEGG (B) analyses of gene-encoding proteins targeted by resveratrol in AD
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reticulum, and peroxisomes, and this process could enhance 
the clearance of damaged materials (Zhang et al. 2020). The 
activation of SIRT1 induces a decrease in acetylated LC3 
levels to increase the level of LC3-II, which eliminates the 
accumulation of α-synuclein in DNs (Guo et al. 2016). The 
inhibition of SIRT1 affects the AMP-activated protein kinase 
(AMPK)/mTOR pathway to inhibit autophagy (Chen et al. 
2022). Moreover, SIRT1-mediated regulation of FOXO is 
associated with increased autophagy, which may improve 
PD-like symptoms (Chen et al. 2018). Wu et al. reported 
that in PC12 cells, resveratrol can promote the autophagic 
degradation of α-synuclein and increase the level of LC3 II 
(Wu et al. 2011). Further studies revealed that resveratrol 
can activate SIRT1, leading to LC3 deacetylation and the 
autophagic degradation of α-synuclein, which can improve 
motor deficits and pathological changes in PD model mice 
(Fig. 5) (Guo et al. 2016).

Apoptosis is considered an important cause of DN loss 
in the pathogenesis of PD (Al-kuraishy et al. 2022). SIRT1 
may play a role in the induction of DN apoptosis through 
regulating the p53 signaling pathway (Salimian et al. 2018). 
In SH-SY5Y cells, SIRT1 directly deacetylates the H3K9 
residue of the p53 promoter and resists apoptosis to attenuate 
dopaminergic neurodegeneration (Xu et al. 2018). Moreo-
ver, SIRT1 provides protection against 1-methyl-4-phe-
nylpyridinium (MPP +)-induced apoptosis and oxidative 
stress by suppressing the MAPK signaling pathway (Wang 
et al. 2017). In PC12 cells, the SIRT1/PGC-1α signaling 
pathway also provides protection against oxidative stress 
induced by MPP + as well as N-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine in PD model mice (Mudò et al. 2011; 

Ye et al. 2012). Ferroptosis is a new type of regulated cell 
death, and its inhibition can alleviate motor behavior and 
neuronal loss in the PD (Mahoney-Sánchez et al. 2021). It 
has been reported that the SIRT1/Nrf2 signaling pathway 
regulates iron metabolism and mitigates ferroptosis in PD 
models (Zheng et al. 2023). Neuroinflammation is consid-
ered to play an important role in the development of PD. The 
NLRP3 inflammasome is involved in the pathogenesis of PD 
and induces the release of proinflammatory cytokines. In the 
rat brain, activation of the NLRP3 inflammasome induced 
by subarachnoid hemorrhage is inhibited by SIRT1 (Fig. 5) 
(Zhang et al. 2021). Through network pharmacology, the 
top 20 items were screened via KEGG analysis with p val-
ues ≤ 0.01, which included mainly lipid and atherosclerosis, 
pathways related to cancer and chemical carcinogenesis-
receptor activation, etc. (Fig. 6). The results of the KEGG 
analysis revealed that the enrichment pathways of resveratrol 
were similar to those of AD and PD, but the significance of 
enrichment differed. Considering the role of SIRT1 in PD, 
more studies are needed to explore this topic.

SIRT1 in HD

HD is a hereditary autosomal-dominant neurodegenera-
tive disease caused by a mutation of a protein called hun-
tingtin (HTT), which contains a sequence with expanded 
CAG repeats. It is considered that 40 or more CAG repeats 
in HTT alleles increase the tendency of the mutant HTT 
(mHTT) protein to accumulate as toxic aggregates in the 
brain (Chang et al. 2021). The symptoms of HD in humans 
with involuntary movement spirit and progressive dementia 

Fig. 5  The role of resveratrol and SIRT1 in PD. (ĺ indicates promotion; ┤indicates inhibition)
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usually appear between the ages of 30–50 years and worsen 
with chronological ages (Ajitkumar and Jesus 2023).

Studies have shown that SIRT1 activity plays a neuropro-
tective role in HD mouse models. However, the mechanisms 
that cause changes in SIRT1 activity have not been clarified. 
Ho et al. (2010) conducted a study to investigate the effects 
of resveratrol preparations (SRT501-M) on HD transgenic 
mice. The results revealed that administering SRT501-M led 
to an increase in the expression of PGC-1α, along with its 
downstream targets nuclear respiratory factor-1 (Nrf-1) and 
uncoupling protein-1 in brown adipose tissue. Nevertheless, 
no significant changes were observed in the expression of 
PGC-1α, Nrf-1, or the mitochondrial transcription factor in 
the striatum. A previous study indicated that the striatum-
specific phosphorylation-dependent regulatory mechanism 
of SIRT1 induction under normal physiological conditions 
is impaired in HD (Li et al. 2016). In addition, the study 
also demonstrated that SIRT1 activity is attenuated in the 
brains of two complementary HD mouse models, providing 
insights into the regulation of SIRT1 activity for the possible 
development of novel therapeutic strategies.

Previous studies have indicated that SIRT1 deacetylase 
activity directly targets neurons to mediate neuroprotection 
from mHTT. SIRT1 activates CREB-regulated transcrip-
tion coactivator 1 (TORC1) by promoting its dephospho-
rylation and interaction with cAMP-response element bind-
ing protein (CREB) to induce brain-derived neurotrophic 
factor (BDNF) transcription in models of HD (Jeong et al. 
2011). Moreover, SIRT1 can control many physiological and 
pathological processes by regulating the activity of multiple 

targets, such as FoxO3a, phospho-tropomyosin receptor 
kinase B (p-TrkB), and p53, to mediate neuroprotection 
in HD models (Fig. 7) (Jiang et al. 2011). However, stud-
ies have indicated that SIRT1 mRNA levels are increased, 
whereas SIRT1 protein levels are decreased in postmortem 
HD brains and specific transgenic HD models (Baldo et al. 
2018; Salamon et al. 2020). The possible hypotheses are 
that the SIRT1 protein is degraded via protein degradation 
pathways, such as the ubiquitinᒩproteasome pathway, in 
HD models or via posttranscriptional mechanisms that are 
correlated with the inhibition of SIRT1 mRNA translation. 
Through network pharmacology, the top 20 items with p 
values ≤ 0.01 were screened via KEGG analysis (Fig. 8). At 
present, further studies on resveratrol in HD are needed, and 
the results of the network pharmacology analysis suggest 
that the Ras signaling pathway, the MAPK signaling path-
way, the phosphoinositide 3-kinase (PI3K)-AKT signaling 
pathway, and the Rap1 signaling pathway may play impor-
tant roles in the effects of resveratrol in the treatment of HD.

Conclusion and perspectives

Multiple studies have emphasized the remarkable protective 
effects of SIRT1 in neurodegenerative diseases. Resveratrol, 
a potent activator of SIRT1, has demonstrated promising 
potential for treating these conditions. The clinical and eco-
nomic significance of resveratrol has garnered widespread 
attention, resulting in its inclusion in numerous clinical 
trials. These trials have confirmed that resveratrol can be 

Fig. 6  GO (A) and KEGG (B) analyses of gene-encoding proteins targeted by resveratrol in PD
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detected in both plasma and cerebrospinal fluid (CSF) fol-
lowing oral administration (Turner et al. 2015). Further-
more, oral intake of resveratrol has been shown to increase 
SIRT1 expression in the peripheral blood mononuclear cells 
of individuals with type 2 diabetes mellitus and in the mus-
cles of obese individuals (Bo et al. 2018; Hoseini et al. 2019; 
Timmers et al. 2011). These findings provide strong support 
for the clinical use of resveratrol in the treatment of neuro-
degenerative diseases by targeting SIRT1.

Furthermore, clinical research has confirmed that the use 
of resveratrol enhances cognition and cerebrovascular func-
tion among non-HD patients (Evans et al. 2017; Huhn et al. 
2018; Moran et al. 2018; Moussa et al. 2017; Thaung Zaw 
et al. 2021). Additionally, it reduces the levels of Aβ40 and 
Aβ42 in CSF and plasma, mitigates the decline in Mini-
Mental Status Examination scores and changes in Activities 
of Daily Living scores, and regulates neuroinflammation in 

AD patients with minimal adverse effects (Bo et al. 2018; 
Turner et al. 2015). These findings collectively underscore 
the therapeutic potential of resveratrol as a novel drug for 
patients with neurodegenerative diseases. Future research 
will aim to comprehensively investigate the therapeutic 
effects and mechanisms of resveratrol in neurodegenerative 
diseases.

The research on resveratrol in the treatment of neuro-
degenerative diseases has shown promise. Despite current 
challenges, such as low bioavailability and insufficient 
clinical evidence, its diverse biological activities make it a 
potential therapeutic candidate. Future research should focus 
on overcoming these challenges, optimizing the delivery 
methods of resveratrol, and exploring its synergistic effects 
with other therapeutic approaches to provide new hope for 
patients with neurodegenerative diseases.

Fig. 7  The role of resveratrol 
and SIRT1 in HD. (ĺ indicates 
promotion; ┤indicates inhibi-
tion)

Fig. 8  GO (A) and KEGG (B) analyses of gene-encoding proteins targeted by resveratrol in HD
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